PODS®, the longer-lasting growth factor

PODS®, the longer-lasting growth factor

PODS®, the longer-lasting growth factor

           PODS® Growth Factors: 

Growth factors (GFs), which include cytokines, are rather unstable proteins with half-lives sometimes as short as a few minutes. This instability is an important part of their function. Imagine GFs that persisted for months in-vivo: they would be widely diffused and their ability to define tissues would be lost.

However, recombinant GF instability creates significant issues when they are used in research, biomanufacturing or therapeutics. Constant replenishment is needed. This is time-consuming and costly in research and biomanufacturing. In therapeutics, it can be ruinous.

PODS® growth factors provide slow, sustained release from a microscopic co-crystal depot. They can easily attach to surfaces and biomaterials and can be localized if needed.

In Cell GS lab, we’ve been looking to see how long these tiny crystals can keep pumping out their growth factor cargo. Proteases are needed to release the cargo. So we placed PODS incorporating CSF-2 (colony stimulating factor-2, alias G-CSF, a cytokine) cargo in a cell culture well containing 10% sera. We then monitored CSF-2 levels using an ELISA assay at regular intervals over a two month period. Two wells were set up. In the first well, all the media was replenished every week. In the second well, half the media was replaced twice a week. So in each case, the media was being removed and replenished at the same weekly rate but in a different way with/without mixing.

                   

The amount of growth factor present in a well at any time was dependent on three factor

1. How much GF had been released from the PODS crystals

              2. How much GF had been removed from the system by the media changes

              3. How much degradation of released GF had occurred in the well since the last measurement

In the two wells with different interventions, we were asking the same question in different ways. As expected, half media changes retained the most growth factor in most weeks of analysis, but there was very little difference with full media changes. There was no evidence of a burst effect (very high levels of release in the first few hours).

Even in the final weeks of the experiment, the GF was still being released. It is quite amazing that such tiny devices, the largest of which is about 5 microns across, can still be working after two months of continuous use.

                            Learn more about PODS at Cell GS website 

CONTACT

QUESTIONS IN YOUR MIND?

Connect With Our Technical Specialist.

KNOW WHAT YOU WANT?

Request For A Quotation

DON'T MISS OUR.
FOLLOW US ON SOCIAL MEDIA!

OTHER BLOGS YOU MIGHT LIKE

3D Culture

In vitro three-dimensional (3D) cell cultures have been increasingly used for drug discovery, tissue engineering, cancer research, stem cell research and regenerative medicine.

Read More »

HOW CAN WE HELP YOU? Our specialists are to help you find the best product for your application. We will be happy to help you find the right product for the job.

TALK TO A SPECIALIST

Contact our Customer Care, Sales & Scientific Assistance

EMAIL US

Consult and asked questions about our products & services

DOCUMENTATION

Documentation of Technical & Safety Data Sheet, Guides and more..