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Abstract

Background

Prediction of treatment outcome of non-small cell lung cancer (NSCLC) with EGFR inhibi-

tors on the basis of the genetic analysis of the tumor can be incorrect in case of rare or com-

plex mutations, bypass molecular activation pathways, or pharmacodynamic variations.

The aim of this study was to develop an ex vivo and in vivo real-time quantitative imaging

test for EGFR inhibitors sensitivity assessment.

Methods

Erlotinib resistant (A549, H460, H1975), insensitive (H1650) and hypersensitive (HCC827)

cell lines were injected subcutaneously in Nude mice. Tumor xenografts from mice treated

with Erlotinib were imaged ex vivo and in vivo using probe-based confocal laser endomicro-

scopy (pCLE) and NucView 488 Caspase 3 substrate, a fluorescent probe specific for the

activated caspase 3.

Results

Assessment of apoptosis at 24h post treatment, both ex vivo in explanted tumor xenografts

and in vivo, showed a significant difference between resistant cell lines (A549, H460 and

H1975) and insensitive (H1650) or hypersensitive (HCC827) ones (p<0.05 for ex vivo imag-

ing, p�0.02 for in vivo imaging). There was also a significant difference between insensitive

and hypersensitive cell lines, both ex vivo (p<0.05) and in vivo (p = 0.01).

Conclusion

Real-time in vivo and ex vivo assessment of apoptosis using pCLE differentiates resistant

from sensitive NSCLC xenografts to Erlotinib.
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Introduction

Over the past decade, identification of oncogenic molecular abnormalities in non-small-cell

lung cancer (NSCLC), such as Epidermal Growth Factor Receptor (EGFR) activating mutations,

has deeply changed the management of patients with advanced disease [1]. EGFRmutations

convey constitutive activation of the EGFR and its downstream signaling pathways. Tumor

cells bearing these mutations become highly dependent of the EGFR signal and thus are highly

sensitive to EGFR tyrosine kinase inhibitors (EGFR-TKIs).

EGFR-TKIs have demonstrated a progression-free survival (PFS)[2–9] and overall survival

(OS) [10] benefit in non-squamous NSCLC. Hence they have been implemented as standard

first-line therapy for patients with metastatic NSCLC bearing activating EGFRmutations

[11,12]. In patients with wild-type (WT) EGFRmetastatic NSCLC, EGFR-TKIs may be used as

second or third line treatment. The selection of patients on the basis of EGFRmutation analy-

sis for first-line treatment with EGFR-TKIs has been successfully used in clinical trials, is now

performed in routine clinical practice [13], and is considered the gold standard in Europe and

in the U.S.. However, several issues remain regarding the relevant method for accurate predic-

tion of EGFR-TKI sensitivity: (i) 15–30% of NSCLC bearing an activating EGFRmutation are

insensitive to EGFR-TKIs in the clinical setting (2–10) (ii) a clinically relevant efficacy of

EGFR-TKI is reported in another 10% of non squamous NSCLC without any EGFRmutation

[14,15], (iii) EGFRmutation status may be unknown at the time of treatment initiation, (iv) a

systematic EGFR testing of all NSCLC remains expensive and time-consuming.

In an effort to lower the cost of EGFRmutation screening, selection of patients on clinical,

histological or biological criteria has been proposed and is widely used. The lower frequency of

activating EGFRmutations among non-Asian, smoker or men and in squamous NSCLC, as

well as the rarity of KRAS and EGFR double mutants may be used to exclude patients from

such a screening [13]. To go further in that strategy, a score has been established to determine

the probability of finding an activating EGFRmutation in a patient’s tumor [16]. All these

strategies aim at predicting the sensitivity of the tumor cells to EGFR-TKIs. Another way to

properly select the optimal treatment for patients could be the measurement of the biological

effect of drugs on tumor cells. Specifically, the goal of such a strategy would be the set up of a

rapid in situ test providing reliable information on how the tumor cells are affected by the

drug.

It has been shown that early assessment of tumor response using 18-FDG PETscan is not

predictive of patients’ outcome [17]. Other radio-tracers have been developed, which are spe-

cific of EGFRmutations [18], EGFR activity [19] or its downstream biological effect [20,21].

Notably, imaging of apoptosis has shown promising results [22–24].

Probe-based confocal laser endomicroscopy (pCLE) provides in-vivo, real-time and

dynamic imaging of the distal lung areas during flexible bronchosopy [25–28]. Hence, pCLE

offers the opportunity to observe biological processes at the cellular level in the lungs of

patients, and has been used in human to establish the in situ, real time diagnostic of precancer-

ous lesions [29], amiodarone-related pneumonitis [30], pulmonary alveolar proteinosis [31],

and in animal models for pulmonary aspergillosis [32,33].

The NucView 488 Caspase-3 substrate (Biotium, San Francisco, California, USA), hereafter

referred to as C3-NucView, is a fluorogenic dye that detects caspase 3 activity within intact

cells, without interfering with the caspase 3 activity. The substrate is initially non-fluorescent,

crosses the cell membrane to enter the cytoplasm, where it is cleaved by caspase 3 to release a

high affinity DNA dye. The migration of the cleaved C3-NucView to the nucleus, and its inter-

action with DNA, leads to a nuclear bright green fluorescence, allowing caspase 3 activity

detection.
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We hypothesized that pCLE with C3-Nucview could be used in-vivo to image EGFR-TKI

induced apoptosis in preclinical model and on ex-vivo fresh tumor samples at the microscopic

level.

The objective of this study is to establish the feasibility of an Erlotinib sensitivity test using

an in situ, real-time, quantitative imaging technique using pCLE with C3-NucView.

Materials and methods

Cell lines

Cell lines were chosen considering their sensitivity to Erlotinib: hypersensitive (HCC827,

IC50 = 0.02μM), insensitive (H1650, IC50 = 2μM) and resistant (H1975, IC50 = 15μM; A549

and H460, IC50 = 20μM). All cell lines were kindly provided by Dr Richard Sesbouë (INSERM

U1079, IRIB, Normandy University, Rouen, France). Cells were cultured in RPMI 1640

medium supplemented with 10% serum and 2mM Glutamine.

Tumor xenografts

The study protocol was approved by the regional ethics committee for animal research

(“Comité d’Ethique Normand en matière d’Expérimentation Animale”, agreement number

N/01-06-12/11/06-15). Mice were bred in the animal facility of our institution, with unlimited

access to food and water, and light/darkness cycle of 12h/12h.

For each tumor xenograft, cells were collected by trypsinisation and washed twice in PBS.

5.10^6 cells were resuspended in 100μL PBS and subcutaneously injected in the right flank of a

6 to 12-week-old female SWISS Nude mouse (Charles River, L’Abresles, France). Tumor

engraftment led to visible tumors at 1 week and evaluable tumors (>125mm3) at 3 to 5 weeks.

In vitro assessment of apoptosis using pCLE

For in vitro experiments, cell lines were treated with 10μM Erlotinib (AlfaAesar, Ward Hill,

Massachusetts, USA), 30μg/mL Cisplatin (Mylan, Saint-Priest, France) or 0.2mL DiMethylSul-

fOxyde (Sigma Aldrich, Saint-Louis, Missouri, USA) for 18 hours. In order to demonstrate the

specificity of the apoptotic signal using Nucview, cell lines were separated in two wells, in

which were added ten μM Ac-DEVD-CHO (caspase 3 inhibitor) or DMSO for an additional

15 minutes. Cells were then harvested and a first sequence of images was acquired using the

CellVizio1 system, by direct application of the optical miniprobe (Alveo-Flex AF2040, Mauna

Kea Technologies) onto the cell pellets. Cells were re-suspended in 500μL of culture medium

containing Erlotinib (10μM), Cisplatin (30μg/mL) or DMSO (0.2mL), and Ac-DEVD-CHO

(10μM, Biotium) or DMSO. Ten minutes after addition of C3-NucView (0.2mM, Biotium), a

second sequence of images was acquired using the same technique.

For flow cytometry experiments, cells were prepared and treated with Erlotinib (10μM),

Cisplatin (30μg/mL) or DMSO (0.2mL), and Ac-DEVD-CHO (10μM, Biotium) or DMSO as

described above. C3-NucView was added at 0.2mM. Cells were then analyzed on Cytomics FC

500 (Beckman Coulter, Fullerton, California, USA) within the hour. Five separate sets of

experiments were performed.

Ex vivo imaging of apoptosis

Once tumors have reached a 125mm3 volume, mice were anesthetized using isoflurane contin-

uous inhalation, tumors were harvested and freshly divided into 4 to 8 2x2mm samples. Each

sample was placed in 100μL medium, containing 10μL DMSO (n = 1), 10μg Cisplatin (n = 1),

or 10μM Erlotinib (n = 2 to 6). After 10 minutes, all but one samples were transferred in 100μL
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medium containing 0.1nmol C3-NucView and 10μL DMSO (n = 1), 10μg Cisplatin (n = 1) or

10μM Erlotinib (n = 1 to 5). After an additional 2 minutes, samples were imaged as described

above. Mice were then euthanized without anesthesia recovering, using intra-peritoneal injec-

tion of 20mg Pentothal.

In vivo imaging of apoptosis

For in vivo preliminary experiments, each animal bared one A549 tumor in each flank, one

being used as a control tumor. Once tumors reached a 125mm3 volume, intra-tumoral injec-

tion of Cisplatin 25μg in 0.05 ml saline or of 0.05mL saline was performed. After 24 hours,

mice were anesthetized using isoflurane continuous inhalation. A 3mm skin incision was per-

formed at the tumor site, a 24G needle was implanted into the tumor, and the 1.4mm Alveoflex

miniprobe was inserted into the tumor through the needle. Different sets of images were

acquired using CellVizio and the CellVizio software (version 1.2.3, Mauna Kea Technologies):

prior to NucView injection and at 1, 15, 30, 60, 120, 180 and 360 minutes after intra-venous

injection of 2nmol of C3-NucView. Mice were euthanized without anesthesia recovery.

For subsequent in vivo experiments, intra-peritoneal treatment was performed in animal

groups bearing tumors from different cell lines. Once tumors have reached a 125mm3 volume,

mice were treated with one intra-peritoneal injection of 25mg/kg Erlotinib or 0.1mL DMSO.

After 24h, mice were anesthetized using isoflurane continuous inhalation, a 3mm skin incision

was performed at the tumor site, a 24G needle was implanted into the tumor, and the 1.4mm

Alveoflex miniprobe was inserted into the tumor through the needle. Two sets of images were

acquired: prior to and 1 minute after the intra-venous injection of 2nmol of C3-NucView,

using CellVizio and the CellVizio software (version 1.2.3, Mauna Kea Technologies). Mice

were euthanized without anesthesia recovery.

Western blot

In order to validate the specificity of the C3-NucView in our model, previously imaged A549

tumor xenografts from mice treated once with intra-tumoral injection of 25μg Cisplatin or

0.05mL saline were explanted at 24h post-treatment. Proteins were extracted, then loaded onto

a 15% SDS-polyacrylamide gel, separated and transferred to a nitrocellulose membrane. The

membrane was incubated with blocking solution at room temperature for 1h and incubated

overnight with primary antibodies against caspase-3 (Cell Signaling Technology, Boston, MA,

USA). After incubation with the corresponding HRP-conjugated secondary antibody (Santa

Cruz Biotechnology), proteins were visualized using an enhanced chemiluminescence ECL

Plus immunoblotting detection system (Amersham biosciences Europe GmbH, Freiburg,

Germany).

Fluorescence Intensity Ratio (FIR) establishment

Data were analyzed using the CellVizio Viewer 1.6.0 software (Mauna Kea Technologies). The

software provides a fluorescence value in arbitrary unit (A.U) for each pixel of the image. A

predefined 100 to 8000 Look Up Table (LUT) was applied to every image for comparison pur-

poses. The 100 lower limit allows reduction of the background noise and excludes non fluores-

cent areas of the analysis. The upper limit of the LUT was set at its maximum, 8000 A.U, to

avoid potential saturation of the signal. The ten brightest images of each sequence were

selected on the basis of the median fluorescence intensity. For each experimental condition,

the Fluorescence Intensity Ratio (FIR) was defined as follows: (sum of the 10 highest median

fluorescence intensity in the sequence acquired with C3-NucView) / (sum of the 10 highest

median autofluorescence intensity).

Apoptosis imaging and EGFR TKI in NSCLC
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Statistical analysis

Statistical analysis was performed using the R language and environment for statistical com-

puting (version 3.1.3, R foundation for statistical computing, Vienna, Austria) on RStudio soft-

ware (version 0.98.1103, RStudio1, Boston, MA, USA). Data were summarized using mean

and standard error for mean. Giving the limited number of values, the non-parametric Krus-

kall and Wallis test was used for comparison of mean FIRs.

Results

In vitro imaging of apoptosis using pCLE

Eighteen hours after exposure to either saline or 30μg/mL Cisplatin, in vitro imaging of A549,

H1975, H1650, and HCC827 cell lines by pCLE showed significant differences in FIR between

treated and untreated cells (respectively: 2.81±0.32 vs. 1.01±0.03, 2.91±0.34 vs. 1.01±0.02,

2.45±0.15 vs. 1.02±0.01, 3.20±0.32 vs. 1.13±0.23; p<0.05). FIR was not different between

groups when cells were treated with caspase-3 inhibitor (10μM) (Fig 1A). Moreover, pCLE

results were strongly correlated with FACS data (r2 = 0.91) (Fig 1B) and with numeration of

apoptotic cells using confocal epifluorescence microscopy (r2 = 0.92) (Fig 1C). When pCLE

was applied on Erlotinib (10μM) treated cells, FIR was significantly different between resistant

cells (A549 and H1975) and H1650 insensitive cells (1.06±0.02 and 1.05±0.04 vs. 1.94±0.07,

Fig 1. In vitro assessment of apoptosis using pCLE: The Fluorescence Intensity Ratio (FIR) is higher in sensitive cells, and is

correlated to the presence of apoptotic cells. (A) A549, H1650, H1975 and HCC827 cell lines were treated for 18 hours with Erlotinib

(10 μM), Cisplatin (30ug/mL) or DMSO (0.1%). Cells were then treated with ten μM Ac-DEVD-CHO (caspase 3 inhibitor) or DMSO for 10

minutes. pCLE (probe-based confocal laser endomicroscopy) was performed on cell pellets before and 10 minutes after addition of NucView

caspase 3 substrate (0.2mM). FIR was calculated and compared between groups using a Kruskall-Wallis’s test. Results are shown as mean

and standard deviation (SD) from 5 independent experiments. *p<0.05 (B) & (C) Correlation between pCLE and flow cytometry (B) and

between pCLE and epifluorescence microscopy (C).

https://doi.org/10.1371/journal.pone.0180576.g001
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p<0.05), between resistant cells and HCC827 hypersensitive cells (1.06±0.02 and 1.05±0.04 vs.
3.84±0.43, p<0.05), and between insensitive and hypersensitive cells (1.94±0.07 vs. 3.84±0.43,

p<0.05).

Ex vivo assessment of Erlotinib sensitivity using apoptosis imaging by

pCLE

Once tumors have reached 125mm3, A549, H1975, H1650 and HCC827 tumor xenografts

were explanted (n = 3 each), divided in 3 to 8 fragments that were treated for 10 minutes with

erlotinib (10ı̀M) (n = 2 to 6 fragments per tumor), DMSO (n = 1 fragment per tumor), and

10μg Cisplatin (n = 1 fragment per tumor). pCLE was performed before and 2 minutes after

addition of NucView caspase 3 substrate (1 μM). The FIR was significantly higher in the

HCC827 tumors (2.07±0.21) compared to A549 (1.27±0.03, p<0.05), H1975 (1.16±0.08,

p<0.05) and H1650 (1.66±0.20, p<0.05) tumors (Fig 2). The FIR in the insensitive H1650

tumors was also significantly higher when compared to A549 and H1975 (p<0.05) (Fig 2).

In vivo detection of apoptosis using pCLE

Twenty-four hours after treatment of A549 xenograft bearing mice by intra-tumoral injection

of 50μL saline or 25μg Cisplatin, in vivo pCLE imaging of apoptosis showed a higher FIR in

treated tumors compared to untreated ones (3.63±0.17 vs. 1.03±0.05, p = 0.004) (Fig 3A).

These results were consistent with ex vivo detection of apoptosis using Western Blot for acti-

vated caspase 3 (Fig 3D). The FIR was maximum at one minute after IV injection of the cas-

pase probe and remained stable over up to 360 minutes (Fig 3) on successive imaging

procedures of the same tumor.

In vivo assessment of Erlotinib sensitivity using pCLE

In vivo assessment of apoptosis using pCLE in tumor xenografts showed a higher FIR in

HCC827 tumors (3.64±1.80) compared to A549 (1.22±0.10, p = 0.01), H460 (1.47±0.27,

p = 0.02), H1975 (1.08±0.06, p = 0.01) and H1650 (1.99±0.2, p = 0.01) tumors (Fig 4). The FIR

in the H1650 tumors was also higher than in A549, H460 and H1975 tumors (p<0.01, p = 0.03

and p<0.01, respectively) (Fig 4 and S1 table).

Discussion

Our study shows that an in vivo in situ real-time imaging of apoptosis using pCLE enables to

differentiate sensitive from resistant tumors to Erlotinib in a mouse model of lung adenocarci-

noma, as early as 24 hours after treatment initiation.

Erlotinib induces apoptosis via activation of caspase 3. The pCLE imaging was performed

with C3-NucView, a caspase 3 substrate that becomes fluorescent when it reaches the DNA, in

the nucleus. In this study, the FIR was correlated to the amount of activated caspase 3 in the

cell, and was found to be higher in cells hypersensitive to Erlotinib than in cells less sensitive to

Erlotinib. This allowed to differentiate HCC827 tumors from H1650 ones. These two cell lines

bear the same EGFR activating mutation but a deletion of PTEN lowers the efficacy of Erlotinib

in the H1650 cells [34]. This particular situation illustrates a major interest of in vivomolecular

imaging over genetic analysis of EGFR: providing a comprehensive phenotypic information in

the individual context of a patient. In fact, in vivo imaging of the response to therapeutic takes

into account every potential resistance mechanism, including, in the case of Erlotinib, other

genomic abnormalities such as EGFR amplification, polymorphism or over-expression, PTEN
loss or BIM polymorphism and pharmacodynamic variations [35]. A limitation of our study is

Apoptosis imaging and EGFR TKI in NSCLC
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the number of cell lines used for this proof of concept study. According to our results, increas-

ing the panel of sensitive / resistant cell line may allow to better distinguish different profiles of

sensitivity to erlotinib.

The in vivo technique developed here can be used for the early assessment of tumor

response to Erlotinib. Nevertheless, if pCLE is available in the clinical setting, the fluorescent

probe used in this study is not. Therefore, we developed an ex vivo test using the same tech-

nique, in incubating fresh biopsies consecutively with EGFR TKI and caspase probe ex-vivo.

The cumulative incubation time of Erlotinib and Caspase probe was limited to 15 minutes

including 2 minutes in the caspase probe mix, in order to be compatible with a rapid on site

procedure that would be conducted in an endoscopic suite immediately after a bronchial

biopsy.

Fig 2. Ex vivo assessment of apoptosis using pCLE shows an increased fluorescent signal in erlotinib sensitive

tumors. A549, H1975, H1650 and HCC827 tumor xenografts were explanted (experiment performed in triplicate for each cell

line) and divided in 3 to 8 fragments. Two to 6 fragments per tumor were treated for 10 minutes with erlotinib (10μM) in 100μL

culture medium, 1 fragment per tumor was incubated for 10 minutes with 10% DMSO in 100μL culture medium and 1 fragment

per tumor was treated with 100mg/ml Cisplatin in 100μL culture medium. All samples were imaged ex vivo. pCLE was

performed before and 2 minutes after addition of NucView caspase 3 substrate (1 μM). FIR was calculated and compared

between groups using a Kruskall-Wallis’s test. Results are shown as mean and SD from 3 independent experiments. *p<0.05.

https://doi.org/10.1371/journal.pone.0180576.g002
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Fig 3. Probe-based confocal laser endomicroscopy enables the in vivo detection of apoptosis using C3-NucView in A549 tumor

xenografts. “(A) & (B): Five mice with two A549 tumor xenografts per mouse were imaged in vivo 24 hours after treatment with Cisplatin

(25μg in 0.05 ml of saline, intra-tumoral injection) or saline (0.05mL, intra-tumoral injection). FIR in A and B were calculated and compared

between groups using a Kruskall-Wallis’s test. Results are shown as mean and SD from 5 independent experiments. *p<0.05. (A) pCLE was

performed before and 10 minutes after intra-venous infusion of NucView caspase 3 (2nmol). (B) pCLE was performed 1, 15, 30, 60, 120,

180 or 360 minutes after intra-venous infusion of NucView caspase 3 (2nmol). (C) Illustrations of the pCLE in vivo imaging of C3-NucView

activation in one Cisplatin-treated A549 xenograft, 2 minutes before and 1, 15, 30 and 60 minutes after i.v. injection of 2nmol C3-NucView.

(D) Western Blot imaging of activated caspase-3, ex vivo, after in vivo treatment (intra tumoral injection), in one animal with one tumor

treated with cisplatin, and the other one treated with saline, showing a higher level of activated caspase 3 in cisplatin treated tumor.

https://doi.org/10.1371/journal.pone.0180576.g003

Fig 4. In vivo assessment of apoptosis using pCLE differentiates Erlotinib resistant, insensitive and hypersensitive tumors. (A)

A549 (n = 8), H460 (n = 7), H1975 (n = 9), H1650 (n = 8) and HCC827 (n = 7) tumor xenografts were imaged in vivo 24 hours after treatment

with Erlotinib (25mg/kg, intra-peritoneal injection) or DMSO (0.1mL). pCLE was performed before and 10 minutes after intra-venous infusion

of NucView caspase 3 inhibitor (2nmol). FIR for DMSO-treated mice was 1.01 (A549), 1.01 (H460), 1.02 (H1975), 1.04 (H1650) and 1.01

(HCC827), (see supplementary material). FIR was compared between groups using a Kruskall-Wallis’s test. Results are shown as mean

and SD from independent experiments. *p<0.05. (B) Illustrations of the pCLE in vivo imaging of C3-NucView activation in tumor xenografts

according to the different cell lines after treatment with erlotinib.

https://doi.org/10.1371/journal.pone.0180576.g004
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Here again, hypersensitive tumors could be differentiated from insensitive and from resis-

tant ones. The use of pCLE allows its implementation in the bronchoscopy suite, as a rapid on-

site ex vivo test. However, such a test would require to control the tumoral content of the evalu-

ated biopsy. To address this particular issue, biopsy guidance using endo-bronchial ultrasound

and rapid on-site evaluation of the biopsy by a pathologist can be proposed.

A potential pitfall of pCLE is the influence of the cellular density on the fluorescent signal.

To limit this bias, we set a 100 UA lower limit for the Look Up Table during image analysis.

This setting allows to reduce the background noise and excludes non fluorescent areas of the

analysis. Thus, the FIR reflects the median fluorescence intensity of the nuclei if there are apo-

ptotic cells in the field of view, and is close to 1 if not. Eventually, in the hypothetical case of a

high FIR with very few nuclei, the observer would eliminate the corresponding images from

the analysis in order to avoid the quantitation of irrelevant signal.

Conclusions

This study shows that micro-imaging of apoptosis using pCLE with C3-NucView enables the

differentiation of hypersensitive, insensitive and resistant tumors to Erlotinib, both in vivo and

ex vivo. Although the technique was applied to Erlotinib sensitivity assessment only, it can be

anticipated that it can be used for other drugs that induce apoptosis. If developed for ex-vivo
analysis of patients’ samples, giving the growing number of targeted therapies in NSCLC and

other tumors -with different resistance mechanisms for several of them-, a unique assessment

method could be preferred to multiple genetic analysis, as it limits implementation costs and

allows immediate testing for new molecules.

Supporting information

S1 Table. FIR from in vitro, ex vivo and in vivo pCLE assessment of apoptosis using
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