
Citation: Shiau, J.-P.; Lee, M.-Y.; Tang,

J.-Y.; Huang, H.; Lin, Z.-Y.; Su, J.-H.;

Hou, M.-F.; Cheng, Y.-B.; Chang,

H.-W. Marine Sponge Aaptos

suberitoides Extract Improves

Antiproliferation and Apoptosis of

Breast Cancer Cells without

Cytotoxicity to Normal Cells In Vitro.

Pharmaceuticals 2022, 15, 1575.

https://doi.org/10.3390/

ph15121575

Academic Editor: Angel

Josabad Alonso-Castro

Received: 29 November 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Marine Sponge Aaptos suberitoides Extract Improves
Antiproliferation and Apoptosis of Breast Cancer Cells without
Cytotoxicity to Normal Cells In Vitro
Jun-Ping Shiau 1,† , Min-Yu Lee 2,†, Jen-Yang Tang 3,4 , Hsin Huang 5, Zheng-Yu Lin 5, Jui-Hsin Su 5,
Ming-Feng Hou 1,6 , Yuan-Bin Cheng 5,* and Hsueh-Wei Chang 6,7,*

1 Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital,
Kaohsiung Medical University, Kaohsiung 80708, Taiwan

2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
3 School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4 Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University,

Kaohsiung 80708, Taiwan
5 Department of Marine Biotechnology and Resources, National Sun Yat-sen University,

Kaohsiung 80424, Taiwan
6 Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical

University, Kaohsiung 80708, Taiwan
7 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: jmb@mail.nsysu.edu.tw (Y.-B.C.); changhw@kmu.edu.tw (H.-W.C.);

Tel.: +886-07-525-2000 (ext. 5212) (Y.-B.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
† These authors contributed equally to this work.

Abstract: The anticancer effects and mechanisms of marine sponge Aaptos suberitoides were rarely
assessed, especially for methanol extract of A. suberitoides (MEAS) to breast cancer cells. This study
evaluated the differential suppression effects of proliferation by MEAS between breast cancer and
normal cells. MEAS demonstrated more antiproliferation impact on breast cancer cells than normal
cells, indicating oxidative stress-dependent preferential antiproliferation effects on breast cancer cells
but not for normal cells. Several oxidative stress-associated responses were highly induced by MEAS
in breast cancer cells but not normal cells, including the generations of cellular and mitochondrial
oxidative stress as well as the depletion of mitochondrial membrane potential. MEAS downregulated
cellular antioxidants such as glutathione, partly contributing to the upregulation of oxidative stress
in breast cancer cells. This preferential oxidative stress generation is accompanied by more DNA
damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in breast cancer cells than in normal cells. N-
acetylcysteine reverted these MEAS-triggered responses. In conclusion, MEAS is a potential natural
product for treating breast cancer cells with the characteristics of preferential antiproliferation function
without cytotoxicity to normal cells in vitro.

Keywords: Aaptos suberitoides; marine sponges; natural product; breast cancer; oxidative stress

1. Introduction

Breast cancer accounts for 30% of female cancer and is the leading cause of women’s
cancer death [1]. It increases by 0.5% per year. Three major subtypes characterize most
breast cancer cells, i.e., estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) [2]. Some 10–15% of breast cancers belong
to triple-negative breast cancer (TNBC), i.e., no ER/PR/HER2 [3], which is hard to cure
using target therapy. Identifying more anticancer drugs against breast cancer cells is still
necessary, particularly for TNBC.

Marine sponges are rich in diverse natural products [4–8] for curing cancer treat-
ments [6]. For example, 70% aqueous ethanol extract of Grayella cyathophora inhibits the
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proliferation of colon and breast cancer cells [9]. Methanol extract of Crambe displays
antiproliferation against pancreatic cancer cells [10]. Marine sponge Lipastrotethya sp. ex-
tract suppresses colon cancer cell proliferation [11]. Ethyl acetate extract from the marine
sponge Stylissa carteri was reported to inhibit the proliferation of breast cancer cells [12].
Sponge-derived natural products such as hemimycalin C, D, E, and manzamine A show
antiproliferation against colon cancer cells [13]. Accordingly, several extracts and bioactive
components of marine sponges exhibit anticancer effects.

Aaptos suberitoides (A. suberitoides) is a marine sponge harvesting in Indonesian wa-
ters [14], and it was also found on Orchid Island, Taiwan, in the present study. Recently,
the ethanol extract of A. suberitoides was reported to inhibit the proliferation and migration
of breast cancer cells [15]. However, this study did not examine the detailed anticancer
mechanism of ethanol extract of A. suberitoides.

The crude extract of natural products containing several bioactive compounds is
expected to exhibit multi-targeting effects against cancer cells with low cytotoxicity to
normal cells [16]. Sponges include diverse compounds [17]. Hence, sponge extracts have
an improving impact on the antiproliferation of cancer cells. Accordingly, the anticancer
effects of A. suberitoides crude extract warrant a detailed investigation of breast cancer cells.

The present investigation assesses the in vitro antiproliferation effects mechanisms of
methanol extract of A. suberitoides (MEAS) to breast cancer cells.

2. Results
2.1. HPLC Analysis of MEAS and Aaptamine

In Figure 1A, the HPLC fingerprint profiles of MEAS (red line) and the main product
of MEAS (aaptamine) (blue line) at 254 nm were shown. Aaptamine [18] (Figure 1B) was
found to appear at 22.730 min, which overlapped the major peak of MEAS. The NMR
spectrum of aaptamine is provided in Supplementary Figure S1. The linear equations
(Y = 4 × 107 X − 653182, R2 = 0.9997) of aaptamine was deduced by the HPLC peak area in
different concentration (Figure 1C). As a result, aaptamine accounts for 15.3% of MEAS.
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aaptamine (n = 3).
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2.2. Antiproliferation of MEAS-Treated Breast Cancer and Normal Cells

In 24 h MTS viability assay, MEAS reduced the cell viability of breast cancer cells
(HCC1937, MDA-MB-231, MDA-MB-468, and MCF7) (Figure 2A). For comparison, MEAS
showed high viability of normal cells (H184B5F5/M10; M10) [19–21] in tested concentra-
tions of MEAS compared to breast cancer cells. These results revealed the preferential
antiproliferation character of MEAS on breast cancer cells showing minor changes to normal
cells.
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Figure 2. MEAS decreased the viability of several kinds of breast cancer cells. (A) Cell viability of
MEAS at 24 h MTS assay. Except for normal breast cells (M10), others were TNBC and non-TNBC
cells. (B) Cell viability of NAC/MEAS at 24 h MTS assay. NAC/MEAS represents NAC pretreatment
(10 mM, 1 h) and MEAS posttreatment for 24 h. Data = mean ± SD (n = 3). Statistical software
assigned low-case letters to each treatment. When the letters of different treatments overlapped, the
results were significant (p < 0.05). In the example of Figure 2B (MCF7 cells), MEAS treatments at 0, 10,
15, and 25 µg/mL labeled with “a, b, c, and d” differ significantly, determined by non-overlapping
conditions. MEAS and NAC/MEAS treatments of MCF7 cells at 10 µg/mL MEAS labeled with “b
and ab” show a non-significant difference because they overlapped with “b”, while at 15 µg/mL
MEAS labeled with “c and ab” show a significant difference.

MCF7 and HCC1937 cells with high sensitivity to MEAS were chosen to perform the
following experiments. The ROS suppressor NAC mitigated the MEAS-caused inhibitory
effects of proliferation against breast cancer cells (Figure 2B). Accordingly, oxidative stress
is involved in the antiproliferation of MEAS.

2.3. Cell Cycle Status of MEAS-Treated Breast Cancer and Normal Cells

In 24 h 7-amino actinomycin D (7AAD) assay, the subG1 phase (%) of breast cancer
cells (MCF7 and HCC1937) and normal cells (M10) [19–21] were deficient (Figure 3A). The
G1 phase (%) was decreased, and the G2/M phase (%) was increased in breast cancer cells.
In comparison, the changes in G1 and G2/M phase (%) in M10 cells were opposite to breast
cancer cells.
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Figure 3. MEAS causes cell cycle redistribution of breast cancer cells. (A) Cell cycle assay of MEAS.
Except for normal breast cells (M10), others were TNBC and non-TNBC cells. Flow cytometry was
performed after 24 h drug treatment. (B) Cell cycle assay of NAC/MEAS. NAC/MEAS represents
NAC pretreatment (10 mM, 1 h) and MEAS posttreatment for 0, 12, and 24 h. Data = mean ± SD
(n = 3). Statistical software assigned low-case letters to each treatment. When the letters of different
treatments overlapped, the results were significant (p < 0.05).

Additionally, NAC mitigated the MEAS-caused G1-inducible and G2/M-suppressing
effects against breast cancer cells at 12 h treatment for MCF7 cells and at 12 and 24 h
for HCC1937 cells (Figure 3B). Accordingly, oxidative stress is involved in the cell cycle
disturbance effects of MEAS on breast cancer cells.

2.4. Annexin V Status of MEAS-Treated Breast Cancer and Normal Cells

Annexin V/7ADD assay was adopted for validating apoptosis. MEAS increased
the annexin V intensity (+) (%) of breast cancer cells (MCF7 and HCC1937) (Figure 4A).
For comparison, MEAS showed high annexin V intensity (+) (%) of breast cancer cells in
tested concentrations of MEAS compared to normal cells (M10). These results revealed the
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preferential apoptosis (annexin V) of MEAS on breast cancer cells showing minor changes
to normal cells.
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Figure 4. MEAS increased the annexin V intensity of breast cancer cells. (A) Annexin V-apoptosis
assay of MEAS. Except for normal breast cells (M10), others were TNBC and non-TNBC cells. Flow
cytometry was performed after 24 h drug treatment. Annexin V (+) (%), such as annexin V (+)/7AAD
(+, −), accounts for apoptosis (%). (B) Annexin V-apoptosis assay of NAC/MEAS. NAC/MEAS
represents NAC pretreatment (10 mM, 1 h) and MEAS posttreatment for 0, 12, and 24 h. Data = mean
± SD (n = 3). Statistical software assigned low-case letters to each treatment.

Additionally, NAC mitigated the MEAS-caused annexin V-detected apoptosis against
breast cancer cells (Figure 4B). Accordingly, oxidative stress is involved in the apoptosis
(annexin V) of MEAS.

2.5. Caspase Status of MEAS-Treated Breast Cancer and Normal Cells

Caspase signaling activations such as Caspases 3, 8, and 9 were used to assess apop-
tosis. MEAS increased the Caspases 3, 8, and 9 intensities (+) (%) of breast cancer cells
(MCF7 and HCC1937) (Figure 5A,C,E). For comparison, MEAS showed high Cas 3, 8, and
9 intensities (+) (%) of breast cancer cells in tested concentrations of MEAS compared to



Pharmaceuticals 2022, 15, 1575 6 of 19

normal cells. These results revealed the preferential apoptosis (Caspases 3, 8, and 9) of
MEAS on breast cancer cells showing minor changes to normal cells (M10).
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8, and 9 activation assays of MEAS. Except for normal breast cells (M10), others were TNBC and
non-TNBC cells. Flow cytometry was performed after 24 h drug treatment. (+), inserted within each
panel, indicates the caspases 3, 8, and 9 (+) intensity. (B,D,F) Caspases 3, 8, and 9 activation assays
of NAC/MEAS. NAC/MEAS represents NAC pretreatment (10 mM, 1 h) and MEAS posttreatment
for 0, 12, and 24 h. Data = mean ± SD (n = 3). Statistical software assigned low-case letters to each
treatment.

Additionally, NAC mitigated the MEAS-caused Caspases 3, 8, and 9-detected apopto-
sis against breast cancer cells (Figure 5B,D,F). Accordingly, oxidative stress is involved in
the apoptosis (Caspases 3, 8, and 9) of MEAS.

2.6. Reactive Oxygen Species (ROS) and Mitochondrial Superoxide (MitoSOX) Status of
MEAS-Treated Breast Cancer and Normal Cells

MEAS increased oxidative stress, such as ROS and MitoSOX intensities (+) (%) of
breast cancer cells (MCF7 and HCC1937) (Figure 6A,C). For comparison, MEAS showed
high ROS and MitoSOX intensities (+) (%) of breast cancer cells in tested concentrations of
MEAS compared to normal cells. These results revealed the preferential oxidative stress
(ROS and MitoSOX) of MEAS on breast cancer cells showing minor changes to normal cells
(M10).
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Figure 6. MEAS increased ROS and MitoSOX intensities of breast cancer cells. (A,C) ROS and
MitoSOX assays of MEAS. Except for normal breast cells (M10), others were TNBC and non-TNBC
cells. Flow cytometry was performed after 24 h drug treatment. (+), inserted within each panel,
indicates the ROS and MitoSOX (+) intensity. (B,D) ROS and MitoSOX assays of NAC/MEAS.
NAC/MEAS represents NAC pretreatment (10 mM, 1 h) and MEAS posttreatment for 0, 12, and 24 h.
Data = mean ± SD (n = 3). Statistical software assigned low-case letters to each treatment.

Additionally, NAC mitigated the MEAS-caused ROS and MitoSOX against breast
cancer cells (Figure 6B,D). Accordingly, oxidative stress is involved in the oxidative stress
(ROS and MitoSOX) of MEAS.

2.7. Mitochondrial Membrane Potential (MMP) Status of MEAS-Treated Breast Cancer and
Normal Cells

MEAS increased the oxidative stress, such as MMP intensity (−) (%) of breast cancer
cells (MCF7 and HCC1937) (Figure 7A). For comparison, MEAS showed high MMP inten-
sity (−) (%) of breast cancer cells in tested concentrations of MEAS compared to normal
cells. These results revealed the preferential oxidative stress (MMP depletion) of MEAS on
breast cancer cells showing minor changes to normal cells (M10).
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Except for normal breast cells (M10), others were TNBC and non-TNBC cells. Flow cytometry was
performed after 24 h drug treatment. (−), inserted within each panel, indicates the MMP (−) intensity.
(B) MMP assay of NAC/MEAS. NAC/MEAS represents NAC pretreatment (10 mM, 1 h) and MEAS
posttreatment for 0, 12, and 24 h. Data = mean ± SD (n = 3). Statistical software assigned low-case
letters to each treatment.

Additionally, NAC mitigated the MEAS-caused MMP depletion against breast cancer
cells (Figure 7B). Accordingly, oxidative stress is involved in the oxidative stress (MMP
depletion) of MEAS.

2.8. Glutathione (GSH) Status of MEAS-Treated Breast Cancer and Normal Cells

The contribution of cellular antioxidants such as GSH in elevating oxidative stress of
breast cancer cells treated with MEAS was evaluated. MEAS increased the oxidative stress,
such as GSH intensity (−) (%) of breast cancer cells (MCF7 and HCC1937) (Figure 8A).
For comparison, MEAS showed high GSH intensity (−) (%) of breast cancer cells in tested
concentrations of MEAS compared to normal cells. These results revealed the preferential
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oxidative stress (GSH depletion) of MEAS on breast cancer cells showing minor changes to
normal cells (M10).
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posttreatment for 0, 1, 3, and 6 h. Data = mean ± SD (n = 3). Statistical software assigned low-case
letters to each treatment.

Additionally, NAC mitigated the MEAS-caused GSH depletion against breast cancer
cells (Figure 8B). Accordingly, oxidative stress is involved in the oxidative stress (GSH
depletion) of MEAS.

2.9. DNA Damages Status of MEAS-Treated Breast Cancer and Normal Cells

MEAS increased the DNA damage such as γH2AX and 8-hydroxy-2-Deoxyguanosine
(8-OHdG) intensities (+) (%) of breast cancer cells (MCF7 and HCC1937) (Figures 9A and 10A).
For comparison, MEAS showed high γH2AX and 8-OHdG intensities (+) (%) of breast
cancer cells in tested concentrations of MEAS compared to normal cells. These results
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revealed the preferential DNA damage (γH2AX and 8-OHdG) of MEAS on breast cancer
cells showing minor changes to normal cells (M10).
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Figure 9. MEAS increased γH2AX intensity of breast cancer cells. (A) γH2AX assay of MEAS.
Except for normal breast cells (M10), others were TNBC and non-TNBC cells. Flow cytometry was
performed after 24 h drug treatment. (+), inserted within each panel, indicates the γH2AX (+)
intensity. (B) γH2AX assay of NAC/MEAS. NAC/MEAS represents NAC pretreatment (10 mM, 1 h)
and MEAS posttreatment for 0, 12, and 24 h. Data = mean ± SD (n = 3). Statistical software assigned
low-case letters to each treatment.
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Figure 10. MEAS increased the 8-OHdG intensity of breast cancer cells. (A) 8-OHdG assay of MEAS.
Except for normal breast cells (M10), others were TNBC and non-TNBC cells. Flow cytometry was
performed after 24 h drug treatment. (+), inserted within each panel, indicates the 8-OHdG (+)
intensity. (B) 8-OHdG assay of NAC/MEAS. NAC/MEAS represents NAC pretreatment (10 mM,
1 h) and MEAS posttreatment for 0, 12, and 24 h. Data = mean ± SD (n = 3). Statistical software
assigned low-case letters to each treatment.

Additionally, NAC mitigated the MEAS-caused γH2AX and 8-OHdG against breast
cancer cells (Figures 9B and 10B). Accordingly, oxidative stress is involved in the damage
(γH2AX and 8-OHdG) of MEAS.

3. Discussion

Marine sponges are abundant in natural products for anticancer drug
discovery [4–8,10,22–24]. The anti-breast cancer effects of ethanol extract of A. suberitoides
were reported, such as antiproliferation and antimigration [15], but it did not provide a
detailed investigation of the anticancer mechanism. The present study examined the an-
tiproliferation effects and mechanism of methanol extract of A. suberitoides (MEAS) between
breast cancer and normal cells.
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Several marine sponge extracts showed anticancer effects. The ethanol extract of
Aaptos suberitoides shows an IC50 value of 12.0 µg/mL to breast cancer cells (HCC-1954) at
72 h MTT assay [15]. 70% aqueous ethanol extracts of Grayella cyathophora and Negombata
magnifica show IC50 values of 2.14 and 1.09 µg/mL to colon cancer cells (Coca-2) at 72 h
MTT assay [9]. A 70% ethanol extract of Dysidea avara shows IC50 values of 11.51, 5.11, and
17.54 µg/mL to the breast (MCF7), cervical (HeLa), and colon (HCT116) cancer cells at 48 h
MTT assay [25]. Notably, these studies did not consider the drug’s safety for normal cells.
They did not investigate the cytotoxicity of normal cells.

In contrast, IC50 values of MEAS at 24 h MTS assay are 17.81, 19.19, 24.41, and
14.23 µg/mL in breast cancer cells (MCF7, HCC1937, MDA-MB-231, and MDA-MB-468,
respectively). Both TNBC and non-TNBC cells were sensitive to MEAS. Moreover, the
viability of normal cells (M10) [19–21] is higher than breast cancer cells following MEAS
treatment, suggesting the preferential antiproliferation effects on breast cancer cells. This
antiproliferation is modulated by oxidative stress as validated by NAC pretreatment
(Figure 2B).

The oxidative stress involvement in MEAS treatment of breast cancer cells was val-
idated by ROS and MitoSOX generation and MMP depletion (Figures 6 and 7). These
oxidative stresses were higher in breast cancer cells than in normal cells, indicating MEAS
triggers the preferential induction of oxidative stress in breast cancer cells.

The redox status is controlled by the balance between cellular antioxidants and proox-
idants [26]. When the levels of prooxidants are higher than that of oxidants, cells suffer
from oxidative stress. The suppression of cellular antioxidants is one of the reasons for
generating oxidative stress [27]. For example, alantolactone, an Inula helenium-derived
natural product, causes oxidative stress by depleting GSH levels of glioblastoma cells [28].
The brown algae-derived fucoidan triggers GSH downregulation to induce oxidative stress
in oral cancer cells [29]. Similarly, MEAS promoted GSH depletion in breast cancer cells to a
greater extent than in normal cells (Figure 8). Moreover, this MEAS-induced GSH depletion
was reversed by NAC pretreatment, a precursor for GSH biosynthesis. Consequently,
MEAS stimulates the preferential induction of oxidative stress against breast cancer cells.

Moreover, several marine sponge extracts showed apoptosis-inducible function in
cancer cells [25,30–32]. For example, ethanol extract of Dysidea avara shows apoptosis of
cervical and leukemia cancer cells by annexin V detection [25]. The N-hexane extract of
Hyrtios erectus causes subG1 accumulation and activates caspase 3 and caspase 9 in breast
cancer cells [33]. For comparison, the subG1 population is few after MEAS treatments for
breast cancer and normal cells (Figure 3). However, the subG1 accumulation is not an
essential apoptotic response [34]. In some cases, no prominent subG1 peaks are observed
in drug-induced apoptosis, depending on the exposure time of drug treatment. For the
example of (-)-anonaine treatment to lung cancer cells, the subG1 peaks are very low at
24 and 48 h but high at 72 h [35]. Notably, MEAS triggered apoptosis (annexin V and
caspase 3) (Figures 4 and 5) and turned on both extrinsic and intrinsic caspases (caspases 8
and 9) (Figure 5). MEAS promoted more apoptosis in breast cancer cells than in normal
cells. This character of preferential apoptosis may attribute to its impact on preferential
oxidative stress. Additionally, the MEAS-induced oxidative stress in breast cancer cells
promotes a greater extent of DNA damage, such as γH2AX and 8-OHdG, than in normal
cells (Figures 9 and 10).

Finally, the impacts of oxidative stress acting on the MEAS-induced cell cycle, oxidative
stress, and DNA damage were validated by NAC pretreatment. Therefore, MEAS exerts
an oxidative stress-associated mechanism for preferential antiproliferation against breast
cancer cells in vitro.

4. Materials and Methods
4.1. Sample Collection and Identification

The animal material of Aaptos suberitoides was obtained from Orchid Island, Taitung
County, Taiwan, in April 2011. The voucher specimen (OISP-4) was given, and the specimen
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was stored at the Department of Marine Biotechnology and Resources, National Sun Yat-sen
University, Kaohsiung, Taiwan. The sponge was identified by co-author Dr. Jui-Hsin Su
using the DNA sequence and the sponge spicule morphology.

4.2. Sample Preparation

The animal material (2.3 kg) was extracted by ethanol three times, and the crude
extract was partitioned by EtOAc and H2O to give an EtOAc soluble portion. This portion
was further partitioned by H2O/methanol/hexanes (1:3:4). After removing the solvents,
the methanol extract portion (5.8 g) of A. suberitoides (MEAS) was used for further chro-
matographic analysis and pharmacological experiments.

4.3. Isolation of Aaptamine

The MEAS was subjected to vacuum liquid chromatography (VLC) eluting with
hexanes/CH2Cl2/MeOH (increasing polarity), and ten fractions (Fr. 1 to Fr. 10) were ob-
tained. Fr. 5 (610.6 mg) was purified by a silica gel open column eluting with CH2Cl2/MeOH
(10:1 to 0:1) to afford three subfractions (Fr. 5-1 to Fr. 5-3). Fr. 5-2 (577.2 mg) was further
purified by CC on LH-20 eluting with 100% MeOH to give aaptamine (492.3 mg) [36].

4.4. HPLC Analysis of A. suberitoides

Separation by high-pressure liquid chromatography (HPLC) was accomplished on
a Shimadzu LC-40D solvent delivery module equipped with the Phenomenex Luna 5 µ

C18(2) 100A analytical column. The Shimadzu SPD-M40A photodiode array detector and
CTO-40S column oven were selected for analysis. The chromatography methods were listed
below: Solution A: 0.1% trifluoroacetic acid(aq); solution B: MeCN; flow rate: 1.0 mL/min;
0 min: 1% solution B, 0–35 min: 1% to 40% solution B, 35–40 min: 40%-100% solution B.

4.5. Cell Cultures and Inhibitors

ATCC breast cancer cell lines, such as MCF7 (Luminal A type), and several TNBC
cell lines, such as MDA-MB-468 [37], MDA-MB-231, and HCC1937 [38], were included
and maintained in DMEM/F12 (3:2) (Gibco, Grand Island, NY, USA) with 10% fetal
bovine serum and P/S antibiotics. A non-malignant normal breast epithelial cell line
(H184B5F5/M10) [19–21] was used as control, which was purchased from Bioresource
Collection and Research Center (Hsinchu, Taiwan) and maintained in alpha medium with
10% bovine serum (Gibco, Grand Island, NY) and P/S antibiotics. N-acetylcysteine (NAC)
(Sigma-Aldrich, St. Louis, MO, USA) [39–42] is a glutathione precursor that was commonly
used as ROS inhibitor. Under 10 mM for 1 h pretreatment, cells were post-treated with
MEAS as indicated in figure legends.

4.6. Cell Viability

Cell viability was detected by Promega’s MTS kit (Madison, WI, USA). Cells were
seeded and incubated overnight. Subsequently, cells were used for drug treatment. Finally,
MTS reagents were mixed with medium for a 1 h reaction and read by an ELISA reader at
490 nm [29].

4.7. Cell Cycle

Fixed cells were incubated with 1 µg/mL of 7AAD (Biotium; Hayward, CA, USA) [43,44].
The DNA content of 7AAD-positive cells was then detected by the Accuri C6 flow cytometer
(BD Biosciences, Franklin Lakes, NJ, USA).

4.8. Apoptosis

Annexin V/7AAD double-staining [45,46] and caspases 3, 8, and 9 activation assays [47]
were used to detect apoptosis status. Annexin V-FITC/7AAD (1:1000/1 µg/mL) [48] (Strong
Biotech; Taipei, Taiwan) was added to cells for 1 h incubation, and their fluorescence
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intensities were detected by Accuri C6 flow cytometer. The cell spots for annexin V
(+)/7AAD (+ or −) intensity were counted as apoptosis (+) cells.

Moreover, the activities of caspases 3, 8, and 9 were detected by OncoImmunin’s spe-
cific peptides (Gaithersburg, MD, USA) according to the manufacturer’s instructions [47,49].
When caspases 3, 8, and 9 are activated, these peptides generate fluorescence and are de-
tected by the Accuri C6 flow cytometer.

4.9. Oxidative Stress

Several oxidative stress-related indicators, such as ROS, MitoSOX, MMP, and GSH,
were tested. They were respectively detected by 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) (Sigma-Aldrich) [41,50], MitoSOX™ Red [51] (Thermo Fisher Scientific, Carls-
bad, CA), DiOC2(3) (Invitrogen, San Diego, CA, USA) [52], and 5-chloromethylfluorescein
diacetate (CMF-DA) (Thermo Fisher Scientific, Carlsbad, CA, USA) (5 µM, 20 min) [29],
according to manufacturer’s instructions. In response to these oxidative stresses, the Accuri
C6 cytometer detected the generating fluorescence of ROS, MitoSOX, and MMP, while the
Guava easyCyte flow cytometer (Luminex, TX, USA) detected the generating fluorescence
of GSH.

4.10. DNA Damages

Several DNA damage indicators, such as γH2AX and 8-OHdG, were detected. Cells
need to process with 75% ethanol fixation before antibody reactions. Except for the extra
step for 7AAD (5 µg/mL, 30 min) incubation, γH2AX and 8-OHdG [29] were detected
by specific antibodies such as γH2AX [53,54] (Santa Cruz Biotechnology; Santa Cruz,
CA, USA)/Alexa Fluor 488-secondary antibody (Cell Signaling Technology, Danvers, MA,
USA) and FITC-8-OHdG antibody (Santa Cruz Biotechnology), respectively. Finally, these
fluorescence intensities were detected by the Accuri C6 flow cytometer.

4.11. Statistical Analysis

JMP software (SAS Institute Inc., Cary, NC, USA) was used to determine significance.
It provides connecting letters for each treatment. When the connecting letters were not
overlapped, treatments differed significantly. Examples for determining significance were
given in the figure legend.

5. Conclusions

The present study validated the oxidative stress-dependent antiproliferation effects of
MEAS in breast cancer cells. MEAS promotes more antiproliferation of breast cancer cells
than normal cells. The anti-breast cancer effects of MEAS exert dysregulation of the cell
cycle and oxidative stress in breast cancer cells. This abnormal oxidative stress sequentially
induces higher apoptosis and DNA damage in breast cancer cells than in normal cells.
Therefore, MEAS is a potential marine natural product for breast cancer treatment.
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