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Abstract: Over the past decade, hydrogels have shown great potential for mimicking three-
dimensional (3D) brain architectures in vitro due to their biocompatibility, biodegradability, and wide
range of tunable mechanical properties. To better comprehend in vitro human brain models and the
mechanotransduction processes, we generated a 3D hydrogel model by casting photo-polymerized
gelatin methacryloyl (GelIMA) in comparison to poly (ethylene glycol) diacrylate (PEGDA) atop
of SH-SY5Y neuroblastoma cells seeded with 150,000 cells/cm? according to our previous experi-
ence in a microliter-sized polydimethylsiloxane (PDMS) ring serving for confinement. 3D SH-SY5Y
neuroblastoma cells in GelMA demonstrated an elongated, branched, and spreading morphology
resembling neurons, while the cell survival in cast PEGDA was not supported. Confocal z-stack
microscopy confirmed our hypothesis that stiff-to-soft material transitions promoted neuronal migra-
tion into the third dimension. Unfortunately, large cell aggregates were also observed. A subsequent
cell seeding density study revealed a seeding cell density above 10,000 cells/ cm? started the for-
mation of cell aggregates, and below 1500 cells/cm? cells still appeared as single cells on day 6.
These results allowed us to conclude that the optimum cell seeding density might be between 1500
and 5000 cells/cm?. This type of hydrogel construct is suitable to design a more advanced layered
mechanotransduction model toward 3D microfluidic brain-on-a-chip applications.

Keywords: hydrogel; 3D cell culture; brain-on-a-chip; SH-SY5Y cells; GeIMA; PEGDA; mechan-

otransduction

1. Introduction

In the last decade, hydrogels have become increasingly important in emulating three-
dimensional (3D) brain architecture in vitro. This class of polymeric materials provides
biocompatibility, biodegradability, malleable mechanical properties, and a porous structure
that allows the mass transfer of nutrients and cellular waste products by diffusion [1].
To this end, we built on our previous work using Matrigel as a 3D cell culture scaffold
in so-called microbioreactor constructs on microelectrode array (MEA) chips [2] and in
special dynamically modulating environments as demonstrated by a polydimethylsiloxane
(PDMS) membrane-based actuator chip [3].

In this paper, we report on the effect of gelatin methacryloyl (GelMA) and poly
(ethylene glycol) diacrylate (PEGDA) on SH-SY5Y cells in 3D. Figure 1 schematically depicts
the concept of our rationale aiming to construct a model in which cells are sandwiched in
between a stiff and a soft material interface. Observing this stiff-to-soft transition here from
glass to a 3D hydrogel substrate in neuronal cell culture is the first step toward a new in
vitro brain model.

To enable the observation of mechanotransduction processes in future biomedical
studies applying this novel in vitro brain model, we introduce here a conceptual microfabri-
cated device, starting from the well-known example of a 2D culture on tissue-treated glass
plates and extending these cultures to 3D by exploring two different types of commercially
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available hydrogel systems in our SH-SY5Y culture experiments serving as a preliminary
neural cell culture model. The selection of a suitable hydrogel system is crucial in the
device design.
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Figure 1. Schematic representation of cells seeded at a stiff-to-soft material interface. (a) Preparation of the 3D culture con-
struct utilizing photo-polymerized hydrogels. (b) Before the differentiation and migration process right after cell seeding and

subsequently sometime after, forming neuron-like phenotype cells and initiating neuronal processes. Polydimethylsiloxane
(PDMS) and cyclic olefin copolymer (COC).

In more detail, utilizing hydrogels for this application can be defined into two cate-
gories, including natural hydrogels, such as gelatin, alginate, hyaluronic acid, fibrin, colla-
gen, and synthetic hydrogels. Synthetic hydrogels include poly (ethylene glycol) (PEG),
poly (acrylamide) (PAAm), and poly (caprolactone) (PCL), and poly (ethylene glycol) di-
acrylate (PEGDA). In addition, so-called semi-synthetic hydrogels, like gelatin-derived
hydrogels, such as gelatin methacryloyl (GelMA) [4], and hyaluronic acid-based hydro-
gels, like HyStem™ and methacrylated hyaluronic acid (MeHA), are also well-established
biomaterials [5,6]. Many different methods of patterning hydrogels are currently being
investigated for their advances in 3D tissue engineering [7].

Considering the sensitivity of brain cells to the mechanical properties of their mi-
croenvironment 3D microfluidic brain-on-a-chip applications must take this factor into
account [8]. In addition to having an appropriate stiffness of the hydrogel suitable for
mimicking brain tissue’s constancy, the selected hydrogel for such models should also allow
human induced pluripotent stem-cell (hiPSC)-derived neural progenitors to differentiate
and migrate so to be able to define models at the neurocircuitry level in more detail [9,10].

Among the various hydrogels, PEGDA and GelMA have proven themselves for 3D
tissue engineering applications in terms of their biocompatibility, biodegradability, and
low cost [11]. PEGDA is a PEG derivative hydrogel that is fabricated through substituting
the terminal hydroxyl groups of PEG with acrylates. PEGDA has two acrylate groups
at each end of the PEG backbone [6]. Even though unmodified PEGDA has a lack of
adhesion peptides, insertion of the acrylate side groups allows it to gain bio-functionality
for encouraging tissue regeneration [12]. Gelatin is a polymer that can be obtained from
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the denaturation of collagen. It maintains natural cell-adhesive binding peptides like
Arg-Gly-Asp (RGD) in the innate structure [13].

Given these beneficial properties of GeIMA and PEGDA, we selected these materi-
als for our investigations toward the design of a microenvironment. We envisaged that
studying the migration behavior of SH-SY5Y neuronal model cells seeded in a sandwiched
manner between a glass and a hydrogel substrate would also further elicit mechanotrans-
duction processes in 3D microfluidic brain-on-a-chip applications.

2. Materials and Methods
2.1. Hydrogel Fabrication
2.1.1. GelMA (Gelatin Methacryloyl) Preparation

A GelMA prepolymer solution was prepared with 5% (w/v) GelMA (900496, Sigma
Aldrich, Saint Louis, MO, USA) in 0.01 mM Eosin Y (E6003, Sigma Aldrich), 0.1% (w/v)
triethanolamine (TEA) (90279, Sigma Aldrich), 37 nM N-vinyl-2-pyrrolidinone (NVP)
(95060, Sigma Aldrich), and phosphate buffered saline (PBS, LO BE02-017F Westburg,
Leusden, The Netherlands). The mixture was stirred on the hot plate at 65 °C and 300 rpm
until completely dissolved. Next, the photo-polymerization of the hydrogel was performed
by visible green light for 100 s at room temperature [14].

2.1.2. PEGDA (Poly(ethylene glycol) diacrylate) Preparation

The PEGDA (455008, Sigma Aldrich, Saint Louis, MO, USA) hydrogel was performed
by preparing two types of solution. The first was an Eosin Y solution was composed of
Eosin Y disodium salt (E4382, Sigma Aldrich) 0.069% (w/v) and MiliQ water. The second
solution, called the buffer solution, contained 100 mM NaCl, 10 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 1.5% (v/v) triethanolamine (TEA) (90279, Sigma
Aldrich), and MiliQ water. After mixing 5% (w/v) PEGDA with buffer solution, added as
a cross-linker 3.5 pL N-vinyl-2-pyrrolidinone (V3409, Sigma Aldrich) and then mixed by
putting 10 pL Eosin Y solution. For the gelation process, PEGDA hydrogel mixture was
photo-polymerized by exposing it to visible white light at room temperature for 10 min.

2.1.3. Red-Colored Thermoset Gelatin Preparation

Red-colored thermoset gelatin (Dr. Oetker, strawberry jelly, The Netherlands) was
prepared by mixing 100 g of powder and 400 mL boiling water. After being poured into
the PDMS ring confinement, the gelatin was kept at +4 °C for 2 h to form a gel.

2.1.4. Cell Culture and Differentiation

The SH-SY5Y cell line (94030304, Sigma Aldrich) was grown in T75 flasks Dulbecco’s
Modified Eagle’s Medium: Nutrient Mixture F12 (DMEM /F12) (L0093, Biowest, Nuaille,
France) supplemented with 10% Fetal Bovine Serum (FBS) (FBS; lot no. 11113, Bovogen,
East Keilor [VIC], Australia) and 1% penicillin—streptomycin (LODE17-602E, Westburg,
Leusden, The Netherlands) at 37 °C in 5% CO,. The cell medium was refreshed every two
days and, the cells were maintained until they reached 80-90% confluence.

Hydrogel Construct Preparation

Upon reaching confluence, the cells were seeded in the PDMS ring confinement
followed by adding a droplet of 10 pL of the hydrogel, which was flattened by placing a
cyclic olefin copolymer (COC) foil on top during the photo-polymerization according to
the scheme in Figure 1a.

Cell Loading

Before cell loading, the PDMS molds were sterilized with 70% ethanol for 5 min by
being submerged. Subsequently, the ethanol was aspirated and dried in an incubator. Im-
mediately after sterilization, the surface to be seeded with cells was coated with 20 png/ cm?
Fibronectin (FC010, Sigma Aldrich). On day 0, the cells were seeded in DMEM /F12 with
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the seeding medium replaced by differentiation medium#1, which was 10% FBS and 1%
penicillin-streptomycin, and then the differentiation was performed. On day 1, differen-
tiation medium#1 was prepared by adding 10 pM retinoic acid (RA) (RA; R2625, Sigma
Aldrich) to DMEM/F12 with 10% FBS and 1% penicillin-streptomycin to induce neuronal
differentiation. On day 3, differentiation medium#1 was replaced with differentiation
medium#2, which contained 50 ng/mL brain-derived neurotrophic factor (BDNF) (B2795,
Sigma Aldrich) plus DMEM/F12 with 10% FBS, 1% penicillin-streptomycin, and 10 ptM RA
to sustain the survival of the cell differentiation. Thereafter, the culture with GelMA was
stopped on day 5 and prepared for fixation and further analysis, and, when we observed
that the culture with PEGDA did not differentiate, it was discarded. The cultures for the
cell seeding density experiment were stopped on day 6 and only analyzed by bright-field
without fixation.

2.1.5. Immunofluorescence Staining Analysis

After washing the cells with warm PBS three times for 5 min, the cells were fixed with
3.7% paraformaldehyde (104005, Merck Millipore, Darmstadt, Germany). For permeabi-
lization of the cells, we used 1% Triton X-100 (Merck Millipore, Burlington, MA, USA)
for 10 min at room temperature, followed by blocking in 10% normal goat serum (NGS,
Thermofisher Scientific, Bleiswijk, The Netherlands) in PBS for 15 min at RT. The cells
were incubated with the primary antibody in blocking solution (-tubulin III 1:200, (Sigma
Aldrich)) overnight at 4 °C. After three times for 5 min PBS washing steps, the cells were
exposed to secondary antibodies (anti-mouse IgG (H + L) Alexa 647 1:200, Thermofisher
Scientific, Bleiswijk, The Netherlands) and 2 drops/mL NucGreen® Dead 488 reagent
(R37109, Thermo Fisher Scientific)) for 3 h at room temperature. Images were obtained
with a Leica TCS SP5X confocal laser scanning microscope (Leica TCS SP5X, Leica, Milton
Keynes, UK). The images were built up by using proper excitation wavelengths for the
different applications.

3. Results

As a first proof-of-principle of the casting procedure illustrated in Figure 1, even
with multiple interfaces, we created stiff-to-soft transition microenvironments by stacking
photo-polymerized GelMA on glass followed by a red-colored thermoset gelatin layer as
an example. The stacked hydrogels were kept in place during droplet dispensing using a
simple, microliter-sized PDMS-ring for confinement on the glass substrate. Figure 2 depicts
this layered construct.

Figure 2. Concept of our stacked hydrogels cast on a standard microscope slide. Photo-polymerizable
gelatin methacryloyl (GelMA) (transparent) on glass topped by a red-colored thermoset gelatin layer
(red). The image was taken with a digital microscope (Keyence VHX-7000). The scale bar indicates
500 pm.



Micromachines 2021, 12, 165

50f11

Consequently, we incorporated SH-SY5Y cells in this type of model by implementing
either GeIMA or PEGDA as the first layer atop of the cells and investigated the culture
performance. We successfully cultured SH-SY5Y cells at 150,000 cell/cm? seeding density
in the cast GeIMA construct, whereas PEGDA did not support the survival of the cells,
which is indicated by the round shape of the cell bodies on day 1 (Figure 3).

Figure 3. 3D SH-SY5Y cells seeded in a PDMS ring confinement with a diameter of 3 mm on a
microscope cover slip with poly (ethylene glycol) diacrylate (PEGDA) on top on day 1. The scale bar
indicates 200 pm.

In more detail, after the initial seeding of the cells in the PDMS ring confinement (3
mm diameter and 1 mm height) for both experiments, we cast hydrogel precursors and
flattened their surfaces by placing a cyclic olefin copolymer (COC) foil on top during
the polymerization step. The resulting height still varied greatly with this simple casting
procedure and requires further optimization. However, this first trial for 3D SH-SY5Y
cultures was performed according to our previous experience with 3D cultures of SH-SY5Y
cells in microbioreactor cultures at 150,000 cells/cm?, and we differentiated the cells with
RA to initiate neuronal differentiation on day 0 and added growth medium with BDNF on
day 3. Then, the cultures were fixed on day 5 [15].

Details of the fabrication and culture processes can be found in the Materials and
Methods (Section 2). The bright-field images in Figure 4 show the SH-SY5Y cells inside
the GeIMA. The hydrogel supported cell attachment and survival as we anticipated, as
GelMA has cell adhesion motifs, such as RGD. The 3D cultured SH-SY5Y neuroblastoma
cells demonstrated an elongated, branched, and more spreading morphology resembling
neurons. However, large cell clusters were also observed (Figure 4a). As highlighted
in Figure 4b,c with white arrows, the GelMA hydrogel promoted neurite extension, the
formation of a neuronal network, and cell communication.
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Figure 4. Morphology of the SH-SY5Y neuroblastoma cells in 3D culture. A larger field of view of the SH-SY5Y cells with
GelMA on top on day 5 (a). The SH-SY5Y cells with GeIMA on top imaged on day 1 (b) and day 5 (c). Images were taken
using a EVOS FL microscope (Thermo Fisher Scientific, Eindhoven, The Netherlands) in the bright-field mode. White
arrows indicate neuron-like phenotypes and neuronal outgrowths. The scale bars indicate 400 pm (a) and 200 pm (b,c).

We hypothesized that a stiff-to-soft material transition would promote neuronal
migration. Based on this claim, neurons would migrate from glass, which is a very stiff
material, to hydrogel, which is a noticeably soft material. To analyze the migration behavior
of the neuronal cells, confocal microscopy z-stack images were examined. Figure 5 depicts
the z-stacks of our culture results on day 5 with a starting cell density of 150,000 cells/cm?.
In cultures with such a high seeding cell density, cluster forming is commonly reported,
which we also observed with a larger field of view. The images here were taken between
such clusters.

While cells in 3D culture conditions like ours can organize themselves across the
volume; cluster forming will also depend on the total scaffold height available, and the
migration speed of cells in the material will determine the final distribution of cells. As we
can see in Figure 4, in addition to the accompanying neuron-like morphology, we observed
that neural cells had, indeed, migrated into the GeIMA hydrogel visible up to approximately
60 pm away from the bottom glass surface. Therefore, we can confirm a transition of SH-
SY5Y cells from their 2D configuration on the glass into the 3D configuration of the GelMA
rendering this biomaterial suitable for our intended application.
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0 pm 100 0 pm 100

Figure 5. Confocal microscopy images of 3D SH-SY5Y cells in the GeIMA. The staining displays neuron-specific protein
B-Tubulin IIT (red) and cell nuclei dye (green). The maximum intensity projection of slices for the range of 0 to 60 pm from
the bottom surface. The scale bars denote 100 um. (a) Maximum intensity projection of slices for the range of 0 to 10 pm
from the bottom surface. (b) Maximum intensity projection of slices for the range of 24 to 36 um from the bottom surface.
() Maximum intensity projection of slices for the range of 50 to 60 pm from the bottom surface. The slices were taken at an

interval of 2 um. Arrows in subfigures (a—c) indicate neuronal outgrowths.

To provide a more extensive evaluation of our model regarding cluster forming,
one-layer GelMA hydrogel constructs were established at various seeding densities. Subse-
quently, Figure 6 shows a series of bright-field optical microscopy images depicting differ-
entiated cells embedded in GeIMA. SH-SY5Y cells were plated according to the scheme in
Figure 1 starting from different initial cell densities with 1000 cells/ cm?, 1500 cells/cm?,
5000 cells/cm?, 10,000 cells/cm?, and 50,000 cells/cm?. Cells at all concentrations rapidly
attached to the surface and proliferated over time. At low cell-seeding densities, such
as 1000 cells/cm? and 1500 cells/cm?, the cells remained visible as single cells up until
day 6. Experiments with starting densities of 5000 and 10,000 cells/cm? reached 70-80%
confluency on day 3. The culture with a cell seeding density of 50,000 cells/cm? was
already nearly confluent on the first day. In the plated area that possessed the concentration
of 50,000 cells/cm?, cellular aggregates began to appear on day 3 and became dominant on
day 6. Large cell aggregates are not desired at this stage of cell culture as these cell clumps
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can lead to reduced diffusion of nutrients to and waste from the cells diminishing the cell
viability and also hampering good control over the differentiation process by limiting the
diffusion of the differentiation medium toward the core of clusters [16].

1000 cells/cm? 1500 cells/cm? 5000 cells/cm? 10,000 cells/cm? 50,000 cells/cm?

Day 1

Day 3

Day 6

Figure 6. 3D SH-SY5Y neuroblastoma cell cultures in GeIMA within a PDMS ring on glass coverslips observed on day 1, 3,
and 6, starting from different initial cell densities. Representative images were taken with an EVOS FL microscope in the
bright-field mode. The scale bars denote 400 um.

4. Discussion

The literature revealed positive effects of PEGDA hydrogel on several types of cells,
such as cartilage cells [6] and pancreatic islet cells [17]. In our work here, we observed that
SH-SY5Y cells were able to survive being embedded in GelMA but not in PEGDA (Figure 3).
This could result from GelMA being a semi-synthetic hydrogel, which, therefore, permits
taking advantage of the biological molecules inherent in the gelatin and enables control
of its mechanical structure by modification with methacrylate side groups [18]. GelMA,
being rich in cell-adhesive RGD peptides, specifically enhances the cellular attachment of
neural cells and profoundly promotes neuro-regeneration, neural cell survival, migration,
and differentiation when proper culture conditions are selected using this material as a
scaffold [9,10,19].

To assess the differentiation of SH-SY5Y cells on the GeIMA hydrogel, the cells were
stained with B-tubulin III and NucGreen®. Despite S-tubulin III being an established neu-
ronal cell marker, extending this assessment by microtubule-associated protein 2 (MAP2)
and Tau protein (TAU) staining would provide valuable information regarding the cells’
states of differentiation [20-25]. To determine the migration, z-stacks were generated from
0 to 60 pm. In addition, SH-SY5Y cells can indeed proliferate and differentiate in the
GelMA optical z-stacks at three different height ranges, which also confirmed that the cell
outgrowths extended between different slices (Figure 5, see white arrows). In summary,
photo-polymerized GelMA prepared in a microliter-sized confined layer demonstrated
good cell proliferation, differentiation, and survival for SH-SY5Y cells against PEGDA.
GelMA showed the transitioning of SH-SY5Y cells from the stiff glass substrate into the
3D microenvironment of the hydrogel. Previously, we similarly demonstrated SH-SY5Y in
nanogroove-enhanced hydrogel scaffolds for a 3D neuronal cell culture as an easy access
brain-on-a-chip model utilizing Matrigel instead [15]. Matrigel is a well-known hydrogel
of a natural source implemented in many different types of tissue engineering applications
requiring a 3D scaffold construct [26]. As Matrigel has rich protein components, such
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as collagen, heparan sulfate proteoglycan, and laminin, it is very good at mimicking the
extracellular matrix (ECM). Therefore, Matrigel is one of the most established biomaterials.
In addition to its use in neural tissue applications [27,28], Matrigel is broadly used in
many other applications, such as the formation of adipose tissue [29] and cardiac muscle
fibers [30], engineered liver organoids [31], and angiogenesis [27]. Therefore, it is reason-
able to assume that, when we use Matrigel instead of the thermoset gelatin layer in the
further refinement of our mechanotransduction model to two layers, the neural networks
will also extend across the second boundary.

Modeling of native brain tissue in vitro requires a proper cell density to function
as neurons in a 3D environment. We tested SH-SY5Y cells on GelMA hydrogel with
different initial cell densities to acquire the most competent result (Figure 6). When using
a low initial cell seeding density, the intercellular cell signaling will be increased due to
interactions among the cells. The increase of the initial cell density continues until an ideal
cell seeding density is achieved for a definite cell-ECM construction. On the other hand,
once cultures are started with a higher initial cell seeding density, the cells suffer from large
cell aggregations. Aggregate formation leads to inhomogeneity, inhibition of intercellular
communication, and insufficient nutrient transport [32-34]. Especially for long-term cell
cultures, the initial cell density is important to prevent the formation of large cell clusters.
Thus, we noticed that the optimal initial cell density was between 1500 and 5000 cells/cm?.

Before we expand our model, we aim to reach a better understanding of the stiff-to-soft
cell transition process. Figure 1 schematically depicts the preparation of the experimen-
tal steps, from cell seeding to casting the hydrogel (Figure 1a) and the initiation of the
differentiation and migration process (Figure 1b). Potentially, we also expect that when
differentiated neurons reach a new boundary with their axonal outgrowth, such as in the
transition from a hydrogel 1 (here, GeIMA) to a hydrogel 2 (not shown, e.g., Matrigel) with
Young’s moduli E1 > E2, there is a high likelihood that neuronal somas can be enabled to
be pulled up into this softer hydrogel region atop of the layer of GeIMA by the activation
of migration processes in a layered construct similarly to the work by Lozano R. et al., who
utilized 3D printing to stack different types of hydrogels in their migration model [35,36].

GelMA has intrinsically high RGD cell adhesion peptides, which supports migration
compared to non-enriched scaffolds, such as PEGDA, which is also often used as a bioma-
terial. High RGD components may also add to the porosity of the matrix, which may favor
active cell displacement in such a construct. In our previous work, SH-SY5Y cells were also
shown to migrate into Matrigel at approximately 80 pm from the bottom surface [15].

Considering the hypothesis formulated in the field of neuroscience that the migration
of cells in the developing brain is observed from stiffer to the softer regions of tissue [37],
one can also argue that such regions correlate with high/low concentrations of RGDs;
with the result that, once stem cells have arrived in a region of lower RGD levels, the
cells will stop migrating and begin to transition into a fully differentiated state. There-
fore, an in vitro model that allows us to investigate controlled variation of such types of
mechanotransduction parameters in detail could help to elucidate this hypothesis.

5. Conclusions

We demonstrated photo-polymerized GelMA in microliter-sized constructs on glass
activated the 2D to 3D transition of differentiated SH-SY5Y cells in culture. Although start-
ing from a very high cell seeding density, the cells survived and differentiated in GeIMA, as
confirmed by neuronal outgrowths. Immunofluorescence staining and confocal microscopy
images displayed that cells migrated into the 3D microenvironment approximately 60 pm
away from the bottom glass surface.

In this study, we also investigated the effects of the SH-SY5Y cell seeding density on
GelMA hydrogels in 3D. To the best of our knowledge, lower concentrations of cell seeding
were favored for the creation of a more convenient 3D microenvironment, facilitating the
penetration of nutrients, water, and growth factors to all cells homogeneously, enabling
intercellular communication and avoiding unwanted cell accumulation. Based on this
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experience, a cell seeding concentration between 1500 and 5000 cells/cm? is sufficient in
terms of neuronal cell survival, differentiation, the formation of neuronal outgrowths, and
to create a 3D neuronal network in a hydrogel.

In conclusion, these results allow us to propose this type of a micro-casted hydrogel
construct in designing a more advanced layered mechanotransduction model toward 3D
microfluidic brain-on-a-chip applications.
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