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Abstract

Significance: Investigating cell death dynamics at the single-cell level plays an essential role in
biological research. Quantitative phase imaging (QPI), a label-free method without adverse
effects of exogenous labels, has been widely used to image many types of cells under various
conditions. However, the dynamics of QPI features during cell death have not been thoroughly
characterized.

Aim: We aim to develop a label-free technique to quantitatively characterize single-cell dynam-
ics of cellular morphology and intracellular mass distribution of cells undergoing apoptosis and
necrosis.

Approach: QPI was used to capture time-lapse phase images of apoptotic, necrotic, and normal
cells. The dynamics of morphological and QPI features during cell death were fitted by a sigmoid
function to quantify both the extent and rate of changes.

Results: The two types of cell death mainly differed from normal cells in the lower phase of the
central region and differed from each other in the sharp nuclear boundary shown in apoptotic
cells.

Conclusions: The proposed method characterizes the dynamics of cellular morphology and
intracellular mass distributions, which could be applied to studying cells undergoing state tran-
sition such as drug response.
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1 Introduction

Cell death identification and characterization are widely used in biological research. For exam-
ple, in anticancer drug discovery, end-point observations such as colorimetric assays and protein
analysis are performed to assess the cell death mechanisms.1 Specification of drug responses
helps identify new drugs with unique mechanisms.2,3 In addition to end-point analysis, the pro-
gression of cell death, for example, the generation of extracellular vesicles during apoptosis, has
also been investigated for a more comprehensive understanding of cell responses.4 Furthermore,
real-time approaches for measuring changes in cellular status such as cytotoxicity5 and ATP
levels6 at the single-cell level have been presented since cell heterogeneity heavily challenges
some drug development processes.7 The prevalent real-time detection method is a fluorescence-
based assay, which is specific and sensitive. However, most of them could only detect one to
three targets and likely disturb end-point analysis such as flow cytometry and colorimetric assays
due to the irreversible effects of fluorescent labeling and the interference between exogenous
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compounds.8 By contrast, label-free techniques are promising for overcoming these disadvan-
tages and giving a proper characterization at the cellular level.9

Cellular changes during apoptosis have been measured by label-free methods in vitro, such as
the localization of changes in NAD(P)H and FAD autofluorescence10 and the changes of cyto-
chrome c distribution measured by Raman microscopy.11 Various label-free characteristics in two
types of cell death were also investigated; Wang et al.12 demonstrated the increased NADH fluo-
rescence lifetime in apoptosis but not in necrosis, and van der Meer et al.13 showed that the
optical attenuation coefficient increased in apoptosis but decreased in necrosis using optical
coherence tomography. Zhao et al.14 combined the multiphoton microscopy, optical coherence
microscopy, and fluorescence lifetime imaging microscopy to classify apoptotic, necrotic, and
normal cells in engineered tissues at 18 h post treatment. Although this study successfully iden-
tified two types of cell death, complicated and high-cost imaging systems are needed.

Quantitative phase imaging (QPI) is a label-free imaging techniques that records the phase
distribution of a cell resulting from both the intracellular refractive index and cell thickness. The
microscopic spatial resolution of QPI could provide information on both cellular morphology
and intracellular mass dynamics, which could not be provided by the fluorescence-based
method. Kühn et al.15 developed a label-free cytotoxicity screening assay to measure the cell
viability by QPI and demonstrated that QPI is a potential tool for distinguishing normal cells
from dead cells at the population level. Vicar et al.16 discriminated between apoptosis and
necrosis based on QPI by training a long short-term memory (LSTM) network with manual
labeling to predict the time-point of cell death and subsequently using the average values of
two features within 10 h before the predicted death time as the inputs to a support vector machine
(SVM) for classification. This research successfully distinguished the two kinds of cell death.
However, the extraprocess of training LSTM is complicated and possibly introduces errors.
Although averaging feature values over time reduces noise, the selection of the window width
needs guidance and greatly influences the results. Moreover, this method provides only end-
point features and not the dynamic change of features.

Our study applies QPI to simultaneously classify apoptotic, necrotic, and normal cells and
characterize the dynamics of morphological and quantitative-phase features in the cell death proc-
ess. Apoptosis and necrosis are two main types of cell death and are usually characterized accord-
ing to different morphological changes: apoptosis is a caspase 3, 7-dependent programmed process
with cell shrinkage whereas necrosis is an accidental cell death with cell swelling. We observe that
most of the QPI features followed the sigmoid function during cell death and showed distinct
alterations between apoptosis and necrosis. To quantify the dynamic changes of the features,
we propose performing curve-fitting to the time-lapse features using the sigmoid function that
adequately captures the dynamics of the features during cell death and reduces the effect of noise.
The parameters of the sigmoid function represent the shape of the curve and have different bio-
logical meanings.17 Summarizing the dynamic changes of the features during cell death by these
parameters is efficient and useful, for it is impracticable to show all time-lapse data directly. The
parameters that show distinctions between apoptosis and necrosis are used to train an SVM clas-
sifier to identify the type of cell death. We report characteristics of the two types of cell death and
the performance of the SVM classifier to demonstrate the usefulness of our proposed sigmoidal
fitting method for analyzing QPI dynamics during cell death.

2 Methods

2.1 Diffraction Phase Microscopy

We used diffraction phase microscopy (DPM), a common-path QPI method that achieves highly
stable phase imaging,18 to acquire quantitative phase images. A schematic diagram of our optical
setup is shown in Fig. 1(a). A quasiplanar wavefront, generated by a 532-nm continuous-wave
laser and an oil-immersion condenser, illuminates the sample at normal incidence with a
0.061-cm2 beam size. The transmitted beam is collected by an objective lens, OL2 (Olympus
UMPlanFI 20XW, 0.5 NA). A uniform reference beam is generated by a transmission grating
(Edmund, 110 grooves∕mm) and a pinhole (Edmund, 20 μm), and it interferes with the sample
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image on the sensor of a CMOS camera (GZL-CL-41C6M-C, Gazelle, Point Grey). Finally,
quantitative phase images are obtained by off-axis holographic reconstruction and unwrapping
methods.19,20 The transverse magnification of the DPM setup is about 46.3×, the theoretical
lateral resolution of the imaging system with coherent illumination is 0.82λ∕NA ¼
0.87 μm,21 the pixel-size in quantitative phase images is 0.48 μm, and fluorescence microscopy
is combined with the DPM to distinguish different types of cells. The optical power density at
the sample plane is 131 μW∕cm2, which is lower than the power density used in a previous
study that reported time-lapse live cell imaging without phototoxicity.22

2.2 Cell Culture, Hydrogen Peroxide Treatment, and Time-Lapse Imaging

Human retinal pigment epithelium cell line, hTERT-RPE-1 (American Type Culture Collection,
ATCC), was chosen as the model cell. hTERT-RPE-1 cells were grown into a monolayer in
Dulbecco’s modified eagle medium: nutrient mixture F-12 (Life Technologies) supplemented
with 10% fetal bovine serum (Cytiva) and 1% antibiotic-antimycotic (GeneDireX) at 37°C, and
5% CO2.

The treatment of 600 to 700 μMH2O2, a common inducer of cell death,23 was used to induce
apoptosis and necrosis in hTERT-RPE-1 cells. After treating the cells for 1.5 h, we stained
the cells by CellEvent Caspase-3/7 Green Detection Reagent (Caspase-3/7, ThermoFisher

Fig. 1 (a) Schematic diagram of the optical setup. Cam 1 is used to capture fluorescence images
and Cam 2 is for QPI. The filter cube shown in violet can be moved out of the optical path for QPI.
Po, polarizer; QWP, quarter waveplate; OL, objective lens; Pin, pinhole; L, lens; Cam, camera;
f, focal length. (b) A quantitative phase image and corresponding fluorescent images (image size:
96 μm × 96 μm; green arrow: an apoptotic cell; red arrow: a necrotic cell).
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Scientific) and Ethidium Homodimer III (EthD-III, Biotium), a DNA dye for dead cells only.
Apoptotic cells show both dyes positive, necrotic cells show Caspase-3/7 negative and EthD-III
positive, and normal cells show both dyes negative under fluorescence microscopy. Time-lapse
quantitative phase images were acquired every 6 min for 2 to 4 h after 30 min of staining, and
fluorescent images were captured at the beginning and end of time-lapse imaging to provide the
ground-truth type of cell death [Fig. 1(b)]. The total exposure time was less than three hours
during the time-lapse experiment. A separate viability test was performed on cells illuminated
by a 131 μW∕cm2 of 532 nm laser for 3 h. On average, 94.4% of the cells were viable (see
Supplementary Material for details). Therefore, phototoxicity effects could be excluded.

2.3 Cell Segmentation, Cell Tracking, and Feature Extraction

Individual cells in the quantitative phase images were segmented by U-Net,24 the watershed
algorithm,25 and manual corrections sequentially. U-Net was used for foreground–background

Table 1 Definition of features extracted from quantitative phase images.

Morphological features

Cell area Circularity Eccentricity Solidity

Cell mask area 4π cell area
cell perimeter2

Minor axis length
Major axis length

Cell area
Cell convex hull area

Whole-cell phase features

Δϕðx; yÞ∶ phase at the pixelðx; yÞ,

Δx;Δy∶ pixel size in theQPI

Optical volume Standard deviation of cell phase

P
ðx;yÞ∈CellΔϕðx; yÞ λ

2πΔxΔy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx;yÞ∈Cell jΔϕðx;yÞ−Δϕðx;yÞj2

number of pixels

r

Intracellular phase distribution features

C∶ the main closed region in the cell with phase > 1.1 � threshold

P∶ cell region − C

Mean of central phase Mean of peripheral phase Peripheral phase
Central phase Fried-egg score

P
ðx;yÞ∈CΔϕðx;yÞΔxΔy

Area ofC

P
ðx;yÞ∈PΔðx;yÞΔxΔy

Area ofP
Mean peripheral phase
Mean of central phase

Area ofC
Cell area

Nuclear edge score 1. Define a high gradient regionH withinC
by Ostu thresholding of the gradient
magnitude in C.

2. Find the two largest ellipses within H
and rank them by the average gradient
magnitude over a two-pixel wide edge
region of the ellipse.

(P
ðx;yÞ∈N j∇ðΔϕðx;yÞÞjΔxΔy

Area ofN ; if N exists
0; else

3. Check the two candidate ellipses if
0.1 < ellipse area

cell area < 0.3, major axis
minor axis <2.5, and

the average gradient magnitude >0.6×
the mean of cellular phase.

N∶ the nuclear edge region 4. N is the nuclear edge region of the
highest-ranked ellipse that passes
the condition check in step 3.
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separation, the watershed algorithm was applied to distinguish each cell, and manual corrections
were applied to cells that were too densely located to be separated automatically. Cell tracking was
then performed by finding the masks with the largest overlapping area in two consecutive frames.26

Eleven features were extracted from individual cells as summarized in Table 1. Four features
describe cell morphology: cell area, circularity, eccentricity, and solidity. Circularity indicates
the degree of roundness, and the eccentricity is defined as the ratio of the minor axis to the major
axis lengths of an ellipse fitted to a cell. Solidity, describing the cellular protrusions, is the ratio of
the cell area to the smallest convex hull area covering the cell. The other seven features are
quantitative-phase features. Optical volume represents the integrated phase over the cell area,
which is proportional to the dry mass of the cell.27 To analyze the intracellular distribution of the
phase, Otsu thresholding and morphological closing were used to separate a central connected
region in a cell from its peripheral region. The central region was defined as a connected region
with its phase higher than 1.1 times of the Otsu threshold. The mean phase in the central region,
the mean phase in the peripheral region, and the ratio between them were also analyzed. The
fried-egg score, defined as the proportion of the central region area to the cell area, was used to
assess the apoptotic volume decrease28 in the peripheral region of a cell as shown in Fig. 2(a).
The nuclear edge score was used to quantify the average amplitude of the phase gradient around
the sharp boundary of the nucleus observed in apoptotic cells. It was defined as the average phase
gradient over a two-pixel wide nuclear edge region identified by ellipse fitting and edge detec-
tion. Examples of automatically identified nuclear edge regions in apoptotic cells and corre-
sponding fluorescent images are shown in Fig. 2(b).

2.4 Sigmoidal Fitting and Parameter Extraction

We performed the sigmoidal fitting within a window length of 13 time-points by linear least-
squares optimization. Feature values were normalized before the sigmoidal fitting in each
window as follows:

Fig. 2 (a) The apoptotic volume decrease in the peripheral region (white arrow) and the sharp
boundary of the nucleus (red ellipse) in an apoptotic cell (the cell is cropped. Image size:
38.4 μm × 38.4 μm). (b) Nuclear edge regions (red ellipses) identified in QPI of apoptotic cells
are roughly consistent with nuclei (yellow arrows) in the EthD-III-stained fluorescent image.
(Image size: 91.2 μm × 72 μm).
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EQ-TARGET;temp:intralink-;e001;116;735

�
xnormalized ¼ x−x1

x1
; for features�

xnormalized ¼ x − x1; else
; (1)

where x1 is the first feature value in the window, x is the original data, xnormalized is the nor-
malized data, and features� include the optical volume, cell area, mean of central phase, and
mean of peripheral phase.

The sigmoid function centered around the time-point Cutoff is expressed as

EQ-TARGET;temp:intralink-;e002;116;657fðtÞ ¼ Amplitude

1þ eGainðCutoff−tÞ
; (2)

where Amplitude represents the difference between the final value and the initial value, and Gain
indicates the rate of the change. A positive Amplitude represents an increase of the feature, and
a negative Amplitude indicates a decrease of the feature.

Fig. 3 Examples of decreases of the optical volume in two necrotic cells, increases of the nuclear
edge score in two apoptotic cells, and small fluctuations of the mean of the central phase in two
normal cells with the corresponding Amplitude, Gain, and R2. (All cells are cropped, image size:
38.4 μm × 38.4 μm. Color bar: 0 to 4.5 rad).
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To find a proper range of time-points for performing the sigmoidal fitting, we determined the
most likely time-point of feature change for each cell by selecting the Cutoff when most features
showed a reasonably good fit to the sigmoid function:

EQ-TARGET;temp:intralink-;e003;116;699T ¼ kjmaxðcountkÞ; countk ¼
X11
i¼1

fitik; fitik ¼
�
1; if R2

ik ≥ 0.7

0; else
; (3)

where T is the selected time-point in hours, countk is the number of features showing a good
sigmoidal fit for the Cutoff ¼ k, and R2

ik represents the goodness of the least-squares fit for the
i’th feature with Cutoff ¼ k. The threshold of 0.7 for R2

ik was used to exclude poor fit due to
noise or fluctuations in cellular morphology and mass distribution. Furthermore, since some of
the features changed later than others during cell death, the final sigmoidal fit of each feature
was determined by finding the Cutoff within the time range of T and T þ 2 that resulted in the
maximum jAmplitude × Gainj for the feature.

3 Results

3.1 Characterization of Cell-Death Features

The data consisted of 149 normal cells, 103 apoptotic cells, and 103 necrotic cells as determined
by end-point fluorescence imaging. Examples of extracted features of time-lapse images and the
corresponding Amplitude, Gain, and R2 are shown in Figs. 3–6. The sigmoidal fitting results of
apoptotic and necrotic cells clearly showed good matches to the transition of feature values. The
average R2 of the fitting results above the threshold of 0.7 was 0.85 over all features in apoptotic
and necrotic cells, and the standard deviation was 0.079, indicating good fits of the time-lapse
course of the features by the sigmoid function. On average, each apoptotic cell and necrotic cell
showed obvious sigmoidal changes in 7.23 and 6.92 features, respectively, out of the 11 analyzed
with a standard deviation of 1.71 and 1.76 features, respectively. By contrast, each normal cell
showed sigmoidal changes in an average of only 0.95 features with a standard deviation of 1.28.
Distributions of the number of features with sigmoidal changes per cell are plotted for the three
types of cells in Fig. S1 in the Supplementary Material. The results confirm our observation that
QPI features follow a sigmoid function during cell death.

Fig. 4 Another example of time-lapse phase images (blue ellipses represent nuclear edge
regions) with the dynamics of selected features in typical apoptosis (SVM error rates < 10%, see
Sec. 3.2 for details; the cell is cropped) (Video 1, MP4, 4.0 MB [URL: https://doi.org/10.1117/1.JBO
.27.4.046502.1]).
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To investigate differences in the features that could help discriminate between apoptotic and
necrotic cells, we performed the Wilcoxon rank-sum test on Amplitude, Gain, and Amplitude ×
Gain of the 11 features. Figure 7 shows swarm plots of the feature values showing significant
differences (p < 0.05) between the two types of cell death. On average, necrotic cells decreased
more in the mean of central phase, mean of peripheral phase, and fried egg score, whereas apop-
totic cells increased more in circularity and the nuclear edge score. Necrotic cells also showed
larger increments but slower changes in cell area than apoptotic cells. In addition to the two
shape-related parameters, Amplitude and Gain, the product of them represents the combination
of both the extent and rate of changes and shows larger differences between the two types of cell
death in eccentricity and nuclear edge score. Furthermore, the Amplitude of several features such
as the mean of peripheral phase, fried-egg score, and nuclear edge showed bimodal distributions
with one of the peaks near zero, indicating that some cells showed little or no change in these

Fig. 5 Another example of time-lapse phase images with the dynamics of selected features in
typical necrosis (SVM error rates < 10%, see Sec. 3.2 for details; the cell is cropped) (Video 2,
MP4, 4.0 MB [URL: https://doi.org/10.1117/1.JBO.27.4.046502.2]).

Fig. 6 Another example of time-lapse phase images with the dynamics of selected features in a
normal cell (the cell is cropped) (Video 3, MP4, 3.2 MB [URL: https://doi.org/10.1117/1.JBO.27.4
.046502.3]).
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features. By contrast, decreases in the mean of central phase and increases in cell area were more
commonly seen in the two types of cell death.

3.2 Identification and Classification of Cell Death

A nonlinear SVM model was trained to classify normal, apoptotic, and necrotic cells based
on selected parameters of the sigmoidal fitting according to the Wilcoxon rank-sum test results.
All of the parameters were processed by gamma correction and normalization before training.
The data consisting of 355 cells with each cell’s classification by the end-point fluorescence
imaging were split into training, validation, and test data sets in a ratio of 2:1:2 for each clas-
sification. The validation sets were used for parameter optimization, and the model performance
was averaged over 500 random splits of data to reduce bias resulting from the choice of testing
sets.29

The overall accuracy achieved for classifying normal, apoptotic, necrotic cells was 84.0%.
The parameters selected to build the optimal classifier included Amplitude of the cell area, mean

Fig. 7 Distributions of (a) Amplitude, (b) Gain, and (c) Ampl i tude ×Gain of features with stat-
istical significances between apoptotic cells and necrotic cells (green dots: apoptotic cells; red
dots: necrotic cells; *: statistically significant difference p value < 0.05; **: statistically significant
difference p value < 0.01; ***: statistically significant difference p value < 0.001; dashed line: the
average value).
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of central phase, and fried-egg score and Amplitude × Gain of circularity and nuclear edge
score. The confusion matrix obtained by averaging the results of the 500 repeats is shown
in Fig. 8. If the two types of cell death were combined, the accuracy of discriminating normal
cells from dead cells was 97.2%. We also trained a second SVM classifier to distinguish between
apoptosis and necrosis using Amplitude of the cell area, mean of peripheral/central phase, and
fried-egg score and Amplitude × Gain of nuclear edge score. The accuracy was 77.3%, which
was within the range of the results from several cell lines and treatments in a previous study using
LSTM and SVM.16

To get more insights about morphological and QPI characteristics that separate the three
classes of cells, we performed a linear discriminant analysis (LDA) of the parameters selected
to train the optimal SVM classifier. As shown in Fig. 9(a), the main differences between the
three groups are changes in the mean of central phase and the nuclear edge score, with changes
in the cell area and circularity contributing secondarily. Although normal cells are well separated
from the two types of cell death, there are substantial overlaps between necrotic and apoptotic
cells. We then plot apoptotic and necrotic cells that were misclassified more than half of the time
(error rate >50%) in different symbols from those classified correctly more than half of the time
(error rate <50%). Figure 9(b) shows that the centroid of the apoptotic cells with high error rates
(cyan symbols) is very close to the centroid of necrotic cells with low error rates (red symbols).
In other words, the former shows lower Amplitude × Gain of the nuclear edge score that is
characteristic of necrotic cells and, hence, cannot be classified correctly based on QPI features.
Moreover, apoptotic cells spread over a wider area than the other two types of cells as shown
in Fig. 9(a), suggesting a more diverse change of features in apoptosis. Our finding that only
about half of the apoptotic cells show obvious nuclear edge is consistent with previous
research.16

The efficacy of using sigmoidal curve fitting to characterize cell death can be further dem-
onstrated by comparing our LDA results with simply taking the difference of feature values
between manually selected time-points. Figure 9(c) shows LDA results of changes in the cell
area, mean of central phase, fried-egg score, circularity, and nuclear edge score between man-
ually chosen final and initial time-points. The LDA results using the sigmoidal fitting method
show better separations between the three classes, suggesting superior characterization and
classification. Although simple subtraction can extract changes in the feature values, selecting
the time-points is subjective and susceptible to noise or random fluctuations of the features.
Moreover, sigmoidal fitting quantifies the rate of change through the parameter Gain, which is
not available from simple subtraction.

Fig. 8 Confusion matrix of our SVM model to classify three types of cells with 84.0% overall accu-
racy on an average of 500 times.
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4 Discussion and Conclusion

Although QPI has been widely used to image many types of cells under various conditions, the
dynamics of QPI features during cellular processes such as cell death have not been thoroughly
quantified. We proposed exploiting curve fitting which is widely used to extract trends of
dynamic cellular characteristics in response to environmental stimuli or during state transition
such as in seed germination30 and gene expression analysis.31,32 The selection of the sigmoid
function to fit the QPI dynamics is based on our observation and supported by previous
research.16,33 The parameters extracted from fitting the time-lapse QPI features mainly reflect
cell mass dynamics. Single-cell mass dynamics obtained by a cantilever-based microfluidic mass
sensor have been used to assay the differential drug response and sensitivity due to different gene
expressions.9 The proposed QPI and sigmoidal fitting method quantifies single-cell mass
dynamics with the advantages of high throughput and providing additional intracellular mass
dynamics.

We also demonstrated the use of new features to quantify intracellular mass dynamics during
cell death. The phase of a pixel in a quantitative phase cell image is proportional to the dry mass

Fig. 9 (a) The LDA results of Amplitude of the cell area, mean of central phase, and fried-egg
score and Ampl i tude ×Gain of circularity and nuclear edge score in normal (black), apoptotic
(green), and necrotic (red) cells. (b) The cells with higher SVM error rates (>¼ 50%) were anno-
tated with different colors for apoptosis (cyan) and necrosis (magenta). (c) LDA results of manually
selecting time-points to calculate changes in the cell area, mean of central phase, fried-egg score,
circularity, and nuclear edge score.
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density integrated over the thickness of the cell at that pixel. Since epithelial cells are typically
thicker at and around the nucleus, the parameter “mean of central phase” represents the mean dry
mass per unit area of the region containing the nucleus and nearby organelles, such as endo-
plasmic reticulum, Golgi apparatus, and mitochondria. Necrotic cells showed a larger decrease in
the mean of the central phase than apoptotic cells, possibly due to the dysfunction and/or deg-
radation of organelles in the central region; apoptotic cells showed a more frequent increase in
the nuclear edge score, which quantified the sharper boundary of the nucleus. Moreover, the
heterogeneity in each type of cell death was evidenced in the results of the single-cell analysis
(Figs. 7 and 9). Therefore, we suggest that our method could not only be applied to the iden-
tification of apoptosis and necrosis but also be used to help specify responses of cells to treat-
ments such as drug candidates and to elucidate possible subcellular kinetics.

The proposed sigmoidal fitting to QPI features could also help quantify and summarize
single-cell dynamics in other applications such as investigating the cellular response to the
treatment with drug-delivering nanographene, which alters the intracellular quantitative phase
distribution after nanoparticle uptake.34 In addition, the investigation of drug responses in
suspended cells also plays an essential role in some clinical uses such as evaluating chemothera-
peutic sensitivity. Xin et al.35 reported a high-throughput screening method for assessing the
drug resistance of epithelial ovarian cancer cells using the combination of QPI and microfluidic
devices. The results showed that drug-resistant cancer cells differed in morphological and
cellular phase features from drug-sensitive ones. We suggest the sigmoidal fitting method might
also be used to capture dynamics of suspended cells in a relatively short period of time for high-
throughput detection applications.

Compared with the study of Vicar et al.,16 our sigmoidal fitting and windowing method
obtains the time-point of cell death along with dynamics of features, which eliminates an extrap-
rocess of training a neural network to predict the cell death time-point. Moreover, in the study of
Vicar et al.,16 the authors only showed example feature curves of a few cells and did not report
systematic quantification of the feature dynamics in the apoptotic and necrotic cells populations.
By contrast, we demonstrated a reliable curve fitting method to parameterize and quantify the
dynamics of cell morphology and intracellular mass distribution from QPI of live cells during
cell death. Importantly, Sigmoidal fitting captures the trend in feature changes and is less influ-
enced by fluctuations in cellular morphology or intracellular mass distribution, as evidenced by
results shown in Sec. 3.1 and Figs. 9(a) and 9(c). Our approach summarizes the complicated
feature curves into simple parameters representing the extent and rate of changes, which enables
further analysis and comparison of cell dynamics heterogeneity at the population level. As a
demonstration, we report quantified changes of many features in H2O2-induced apoptosis and
necrosis in hTERT-RPE-1 cells. Therefore, our method robustly provides quantitative metrics to
summarize the dynamics of apoptosis and necrosis instead of classification only.

In conclusion, this study proposes a label-free method based on QPI to identify apoptosis and
necrosis and characterize cell death dynamics using the sigmoidal fitting with parameters that
quantify both the extent and rate of feature changes. SVM classifiers based on the sigmoidal
parameters showed 84.0% overall accuracy in the classification of normal cells and the two types
of cell death and 77.3% accuracy in the discrimination of only apoptosis and necrosis. This label-
free, single-cell technique is promising for the characterization of the dynamics of cellular
morphology and intracellular mass distribution on cells undergoing state transition, and it has
the potential to aid in drug development.
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