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SUMMARY
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26–
28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and muta-
tions in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hyper-
sociality inWS. However, the contribution ofGTF2I to human neurodevelopment remains poorly understood.
Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimen-
sional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripo-
tent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit
increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased
cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophys-
iological activity on amultielectrode array. Our findings suggest that changes in synaptic circuit integrity may
be a prominentmediator of the link between alterations inGTF2I and variation in the phenotypic expression of
human sociality.
INTRODUCTION

Deletion or duplication of 26–28 genes in the 7q11.23 chromo-

somal region results in Williams syndrome (WS) or 7q11.23

microduplication syndrome (7dup), respectively.1,2 Individuals

with these multisystemic disorders exhibit a constellation of

symptoms with frequently opposing phenotypic expression.

This phenotypic contrast reflects the dose-dependent effects

of copy-number alterations of the underlying genes, conse-

quently rendering these disorders tractable portraits of geno-

type-phenotype correlation.3–5 Notable among these contrast-

ing symptoms are opposing neurocognitive phenotypes, in

particular, differences in social expressivity.1,2 Whereas individ-

uals with 7dup customarily portray hyposocial symptoms of

autism spectrum disorder (ASD),1,6 individuals with WS feature

the unique behavioral trait of pronounced hypersociality.7,8

In distinction from individuals with classical or ‘‘typical’’ WS, in

whom haploinsufficiency affects the full set of 26–28 genes,

some individuals—who are said to have ‘‘atypical’’ WS—have

smaller deletions that spare select genes near the deletion

breakpoints and consequently present with partial WS clinical
This is an open access article under the CC BY-N
profiles that spare particular phenotypes.5 On this basis, previ-

ous studies have indicated that the altered social phenotype ex-

hibited by individuals withWSmay be attributable to the haploin-

sufficiency of GTF2I,9,10 a gene located in the WS chromosomal

region.2,5,11,12Most notable was the observation of a patient who

near-selectively preserved both copies of GTF2I and, in associ-

ation, retained a normal social phenotype.13 Similarly, a separate

study reported two SNPs in GTF2I in a cohort of individuals with

ASD,14 a further argument for the role of this gene as a mediator

of social expression. More intriguingly, some evidence indicates

that the 7q11.23 locus,15,16 and GTF2I in particular,17,18 has un-

dergone extensive modification in the human evolutionary line-

age, suggesting this gene may contribute more broadly to varia-

tion in human sociality.19

GTF2I encodes the general transcription factor 2I (GTF2I), a

protein withmultiple functions in both the cytoplasm and nucleus

of the cell.20,21 GTF2I is primarily thought to be a prominent regu-

lator of signal-induced gene transcription, a process in which

stimulation via extracellular signals activates GTF2I, inducing

its translocation to the nucleus.20,22,23 To date, most studies

that have investigated the effects ofGTF2I on neurodevelopment
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have been conducted in animal models,24,25 which have tended

to affirm the association of heterozygousGTF2I deletion with hy-

persociality and demonstrated the essentiality of GTF2I for

viability.26–28 Barak and colleagues additionally showed that

GTF2I deletion selectively in excitatory neurons resulted in

impaired myelination in the brains of mice.29 Despite this prog-

ress, however, recapitulation of aspects of human cortical devel-

opment by animal models may be suboptimal,30 a subtle yet

perhaps salient difference given the prominent association be-

tween humans and social expression. As a different method,

the use of human induced pluripotent stem cells (hiPSCs) has

facilitated the study of mechanisms of neurodevelopmental dis-

ease in a human context.31 Prior studies that have investigated

this spectrum of disorders using hiPSCs have been limited

mainly to WS and 7dup.32,33 In consequence, the role of GTF2I

in human neurodevelopment has yet to be comprehensively

defined.

Here, we used neural cellular models, including neural progen-

itor cells (NPCs), human neurons, and three-dimensional cortical

organoids, from isogenicGTF2I-knockout (GTF2I-KO) hiPSCs to

investigate the contribution of GTF2I to human neurodevelop-

ment. Loss of GTF2I resulted in progenitors with altered cell

cycles and proliferation and promoted the development of neu-

rons and cortical organoids with synaptic defects, increased cell

death, and decreased electrophysiological activity. Overall, our

findings support a model in which alterations in NPCs induced

by the loss of GTF2I give rise to neurons and networks with

synaptic reduction, reduced electrical activity, and impaired

neuronal health.

RESULTS

Loss of GTF2I induces transcriptomic alterations in
cortical organoids
To investigate the role of GTF2I in human neurodevelopment,

two hiPSC lines (CVB and WT83) were CRISPR edited into

isogenic GTF2I-KO pairs (Figures 1A, S1, and S2)34 and subse-

quently differentiated into neural cell types. Control and GTF2I-

KO hiPSCs were initially differentiated into cortical organoids

(Figure 1B),35 a cytoarchitecturally complex human cellular

model of neurodevelopment that develops in close alignment

with the human fetal developing brain.36–38 Concordantly, immu-

nostaining of cortical organoids portrayed a characteristic neu-

rodevelopmental spatiotemporal pattern in which Ki67+ progen-

itor regions give rise to NeuN+ andMAP2+ neurons (Figure 1C),35

and initially predominant Ki67+ progenitors diminished with the

temporal emergence of neurons (NeuN+, CTIP2+) and, subse-

quently, glial fibrillary acidic protein-positive glia (Figure S3A).
Figure 1. Transcriptomic alterations in GTF2I-KO cortical organoids

(A) Depiction of the GTF2I locus on chromosome 7 (top) and representation of it

(B) Schematic showing the differentiation protocol of cortical organoids from hiP

(C) Immunostaining of 2-month-old organoids showed progenitor regions of Ki67

scale bar, 200 mm.

(D) GTF2I is robustly expressed in 2-month-old control organoids and absent in

(E) Volcano plot showing differentially expressed genes detected by RNA seque

(F and G) Gene Ontology analysis of top 10 and bottom 10 altered gene expres

process’’ (G).
We further sought to evaluate the expression of GTF2I in the

cortical organoid model via analysis of single-cell transcriptomic

data previously generated by our group (Figures S3B–S3E).35

Single-cell transcriptomic data from 1-, 3-, 6-, and 10-month

cortical organoids were analyzed; cells distinctly clustered by or-

ganoid age (Figure S3B) and cell type (Figure S3C). GTF2I was

robustly expressed in organoids (Figure S3D); however, expres-

sion was notably most pronounced in progenitors and glutama-

tergic neurons (Figure S3E). Immunostaining likewise portrayed

GTF2I expression in control cortical organoids that was absent

in organoids differentiated from GTF2I-KO hiPSCs (Figure 1D).

A prior investigation of transcriptomic variation in 7q11.23 cell

lines strategically estimated that 10%–20% of the differential

expression could be attributed to GTF2I, with that variance

particularly enriched in biological categories most relevant to

disease-specific phenotypes.33 Similarly, we predicted that the

removal of GTF2I would be associated with transcriptomic

changes in cortical organoids and that dysregulation would be

particularly enriched in pathways critical for neurodevelopment.

Comparison of the transcriptomic profiles of 2-month-old orga-

noids showed markedly altered expression, with the upregula-

tion (R1.5-fold) of 456 genes and downregulation (%�1.5-fold)

of 404 genes in GTF2I-KO cortical organoids compared to con-

trols (Figure 1E). Summary Gene Ontology analysis of top differ-

entially expressed pathways for the ‘‘cellular component’’ and

‘‘biological process’’ showed the downregulation of synaptic

processes and synaptic signaling, particularly of glutamatergic

transmission, and the upregulation of pathways relevant to

apoptotic signaling (Figures 1F and 1G).

GTF2I-KO alters cell cycle, proliferation, and survival
Consistent with increased expression of apoptotic signaling path-

ways, neuronal deletion of GTF2I is associated with decreased

brain weight and cortical thickness in mice.29 We likewise

observed that 2-month-oldGTF2I-KO organoids were decreased

in diameter compared to controls (p < 0.0001; Figure 2A), yet ex-

hibited similar proportions of Ki67+ proliferative cells (Figure S4A).

To further evaluate their apoptotic phenotype, 2- and 3-month-

old organoids were dissociated and assessed via an annexin

assay.GTF2I-KO organoids at 2months (p = 0.004) and 3months

of age (p = 0.019) exhibited a higher frequency of apoptotic cells

compared to controls (Figures 2B and S4B).

Previous work in other experimental systems has documented

the involvement of GTF2I in proliferation and cell-cycle regula-

tion,23,39,40 suggesting that it may likewise affect these pro-

cesses during neurodevelopment. To study these properties in

neural cells, control and GTF2I-KO hiPSCs were differentiated

into NPCs (Figures 2C and S4C). To compare their proliferative
s alleles in the control and GTF2I-KO conditions (bottom).

SCs.

positivity that give rise to mature neurons immunopositive for NeuN andMAP2;

GTF2I-KO organoids; scale bar, 200 mm.

ncing of 2-month-old control and GTF2I-KO organoids.

sion pathways within the categories ‘‘cellular component’’ (F) and ‘‘biological
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Figure 2. Loss of GTF2I alters proliferation dynamics and survival in human cell models

(A) Reduced diameter of GTF2I-KO cortical organoids compared to controls (Student’s t test, t96 = 5.73, p < 0.0001; n = 43 control and 55GTF2I-KO organoids);

scale bar, 1,000 mm.

(B) Left, organoid dissociation into single-cell suspension to analyze apoptotic cell frequency. Right, compared to controls, GTF2I-KO organoids have a higher

frequency of apoptotic cells at 2 months (Student’s t test, t17 = 3.35, p = 0.004; n = 7 replicates of�5–10 control organoids and 12 replicates of�5–10GTF2I-KO

organoids) and 3months (Student’s t test, t12 = 2.71, p = 0.019; n = 5 replicates of�5–10 control organoids and 9 replicates of�5–10GTF2I-KO organoids) of age.

See also Figure S4B.

(C) Immunostaining portrays Nestin+ NPCs; scale bar, 100 mm. See also Figure S4C.

(D)GTF2I-KONPCs exhibited a higher proliferation rate per day (Student’s t test, t14 = 4.37, p = 0.001; n = 7wells of control NPCs and 9 wells ofGTF2I-KONPCs);

scale bar, 1,000 mm. See also Figure S4D.

(E) NPCs evaluated with cell-cycle and DNA fragmentation assays.

(F) GTF2I-KO NPCs show an altered cell-cycle profile compared to controls (2-way ANOVA, F2,54 = 7.829, p = 0.001; n = 6 10-cm plates of control NPCs and 14

10-cm plates of GTF2I-KO NPCs).

(G)GTF2I-KO and control NPCs showed a similar frequency of cells with fragmented DNA (Student’s t test, t11 = 1.26, p = 0.23; n = 5 10-cmplates of control NPCs

and 8 10-cm plates of GTF2I-KO NPCs). Data are presented as mean ± SEM.
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propensities, NPCs were plated in a 6-well plate and allowed to

proliferate for a set number of days, after which total cells per

well were collected. Although control and GTF2I-KO organoids

exhibited similar proportions of Ki67+ proliferative cells, quantifi-

cation revealed a higher rate of proliferation per day ofGTF2I-KO

NPCs compared to controls (p = 0.001; Figures 2D and S4D). In

pursuit of an explanation for the increased proliferation rate, the

cell-cycle profiles and frequencies of cells with DNA fragmenta-

tion were compared between control and GTF2I-KO NPCs (Fig-

ure 2E). GTF2I-KO and control NPCs showed distinct cell-cycle

profiles (p = 0.001; Figure 2F), but rates of DNA fragmentation

were similar between genotypes (p = 0.23; Figure 2G), suggest-

ing impairment from GTF2I-KO in NPCs is concentrated in cell-

cycle dysregulation and altered proliferation rather than cell

death.

GTF2I-KO is associated with decreased synaptic
proteins and reduced electrophysiological activity
Neural progenitor cells were subsequently differentiated into

neurons that immunostained positive for the neuronal markers

b-tubulin (Tuj1), synapsin, and MAP2 (Figures 3A and S4E). To

corroborate our observation of increased apoptosis in GTF2I-

KO organoids, we first compared the frequencies of apoptosis

in control and GTF2I-KO neurons. In contrast to our results in

NPCs but in agreement with our findings in 2- and 3-month-old

organoids, 8-week GTF2I-KO neurons exhibited a higher fre-

quency of apoptotic cells compared to controls (p = 0.016;

Figure 3B).

Considering the increased cell death in GTF2I-KO neurons

and organoids and the results of our RNA sequencing analyses

showing the downregulated expression of synaptic pathways

in GTF2I-KO cortical organoids, we sought to further evaluate

how the loss of GTF2I influences synaptic phenotypes. Given

the robust neurocircuitry expected in cortical organoids35 and

the decrease in synaptic gene expression we observed in

GTF2I-KO organoids, we used organoids as the initial model to

investigate synaptic proteins. Western blot analyses showed a

decrease in the presynaptic protein synapsin (p = 0.026),

although not of the postsynaptic protein PSD-95 (p = 0.69), in

2-month-old GTF2I-KO cortical organoids compared to controls

(Figure 3C). Having identified decreased protein quantity, mono-

layer neurons were subsequently used as a more tractable

model to assess synaptic structural integrity. Immunostaining

of presynaptic VGlut1 and postsynaptic Homer1 showed a

reduction of co-localized synaptic puncta in GTF2I-KO 8-week

neurons compared to controls (p = 0.0001; Figure 3D); concor-

dant with the pattern of decreased synaptic proteins in organo-

ids, the decrease was more pronounced for presynaptic

VGlut1 (p = 0.04) than for postsynaptic Homer1 (p = 0.48; Fig-

ure S4F). To determine whether synaptic puncta co-localization

could be rescued by the reintroduction of GTF2I, GTF2I-KO

NPCs were transfected with either a GTF2I-expressing plasmid

or a control plasmid (see STARMethods), differentiated into neu-

rons, and synaptic puncta quantified. GTF2I-KO neurons re-ex-

pressing GTF2I showed increased co-localized synaptic puncta

compared to GTF2I-KO neurons (p = 0.026; Figure 3D).

Given the structural synaptic defects identified in GTF2I-KO

neurons and organoids and proposed neurophysiological alter-
ation in WS models,32,41 we sought to interrogate the functional

connectivity ofGTF2I-KO neuronal circuitry by plating organoids

for evaluation on multielectrode array (MEA) electrophysiology

(Figures 3E and 3F). Compared to controls,GTF2I-KO organoids

exhibited fewer spikes per minute (p = 0.007), a decreasedmean

firing rate (p = 0.007), and fewer bursts per minute (p = 0.001).

However, the difference in the synchronous network burst rate

between control and GTF2I-KO organoids did not reach statisti-

cal significance (p = 0.15), and no statistical difference in the syn-

chrony index was detected (p = 0.92; Figure 3G).

DISCUSSION

GTF2I is included among the 26–28 genes at the Williams-

Beuren chromosomal locus at 7q11.23.2,11,12 Mutations of

GTF2I are associated with variation in the phenotypic expression

of human sociality and may explain some of the social variation

observed in individuals with WS.9,10,42 Although our group previ-

ously used patient-derived hiPSCs differentiated into neural cell

types to investigate WS,32 little is understood about the specific

effects of GTF2I on human neurodevelopment. Hence, rather

than investigating WS, the present study was undertaken to

isolate and identify the contribution of GTF2I to human neurode-

velopment. To that end, we used two pairs of isogenicGTF2I-KO

hiPSC lines differentiated into an array of neural cell platforms,

including NPCs, neurons, and cortical organoids. Transcrip-

tomic analyses showed that compared to control cortical orga-

noids, GTF2I-KO cortical organoids had decreased expression

of pathways relevant to synaptic signaling, particularly glutama-

tergic transmission, and increased expression of apoptotic path-

ways. In concordance, GTF2I-KO organoids and neurons ex-

hibited higher frequencies of apoptotic cells and synaptic

impairment, the functional consequences of which were further

reflected by the decreased electrophysiological activity of

GTF2I-KO organoids on MEA. Compared to control NPCs,

GTF2I-KO NPCs portrayed an altered cell-cycle profile and an

increased proliferation rate. Together, these results suggest a

summary model of the function of GTF2I during neurodevelop-

ment in which GTF2I helps regulate the growth and proliferation

of neural progenitors, but subsequently, at the mature neuronal

stage, becomes critical for neuronal health and the maintenance

of neuronal function (Figure 4).

Cortical organoids offer an invaluable platform to study neuro-

developmental disease31,43,44 andmayoffer insight intomolecular

mechanisms that contribute to aberrant phenotypic expression in

individuals with WS, such as hypersociality.9 We found transcrip-

tomic dysregulation inGTF2I-KO cortical organoids compared to

controls, includingdecreasedexpressionofgenes involved insyn-

aptic structure and function, particularly glutamatergic function,

and enriched expression of genes in pathways involved in cell

death. This observation was matched by further findings showing

decreased organoid size and, via subsequent assays, increased

apoptosis, decreased synaptic proteins, and decreased electro-

physiological function. Notably, althoughwe observed decreased

synaptic gene expression and decreased synaptic proteins in

GTF2I-KO cortical organoids, decreased synaptic structural

integrity in GTF2I-KO neurons, and decreased electrophysiolog-

ical activity in GTF2I-KO cortical organoids, the mechanisms by
Cell Reports 43, 113867, March 26, 2024 5



(legend on next page)

6 Cell Reports 43, 113867, March 26, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
which synapses are lost and electrophysiological activity is

reduced remain unclear. One explanation may be that synaptic

reduction is principally a consequence of increased cell death.

Support for this proposition is offered by the observation of similar

synchrony of electrical activity in GTF2I-KO organoids despite

the reduction inactivity. Indeed, the lackofdifference in synchrony

between control and GTF21-KO organoids argues against a hy-

pothesis that decreased electrophysiological activity is due to an

intrinsic synaptic defect but rather suggests instead an extrasy-

naptic process, the end result of which is detected as reduced

electrophysiological activity. Another explanation may be that

GTF2I, a highly multifunctional protein,20 contributes to synaptic

maintenance via a mechanism independent from its role support-

ing neuronal health. This proposition is conferred some support

both by the intriguing observations herein that the presynaptic

compartment in GTF2I-KO neurons and organoids appears to

be slightly more affected than the postsynaptic compartment

andby theobservation thatmicewithGTF2Ideleted inglutamater-

gic neurons—aprominent overlapwith the present study—exhibit

defects inneuronal conduction that aredistinct fromanyeffectson

cell survival.29 Neither of these explanations necessarily excludes

the other, of course, but it is apparent that further efforts to pre-

cisely define the electrophysiological changes that emerge sec-

ondary to the loss of GTF2I will be a valuable direction for future

research. In particular, patch-clamp experiments will be required

toprecisely definewhether or how the electrochemical synapse it-

self is affected by the loss of GTF2I.

Notably, our findings herein of synaptic reduction inGTF2I-KO

organoids and neurons contrast with our group’s previous ob-

servations of synaptic hyperactivity in neurons generated from

individuals with WS.32 Direct comparison of the results of these

studies may be improper, however, given that the hiPSC lines

used here are isogenic, whereas those used in the previous

study were derived from individuals with WS and hence hemizy-

gously deficient in the whole complement of WS genes. Never-

theless, although the present study sought to identify the neuro-

developmental effects of GTF2I in isolation and these findings

will inform future studies that focus on GTF2I in the broader

context of neurodevelopmental disease, seeking to understand
Figure 3. Loss of GTF2I is associated with synaptic dysfunction and de

(A) Representative images of neurons differentiated from NPCs immunostained p

scale bar, 100 mm. See also Figure S4E.

(B) Compared to controls, GTF2I-KO neurons exhibited a higher frequency of ap

control neurons and n = 4 10-cm plates of CVB GTF2I-KO neurons).

(C) Representative western blots (left) and quantification (right) of the presynaptic p

6 GTF2I-KO samples from CVB and WT83 hiPSC lines) and the postsynaptic pro

GTF2I-KO samples from CVB and WT83 hiPSC lines); samples are independen

averaged from duplicate lanes.

(D) Co-localized synaptic puncta density was reduced inGTF2I-KO neurons and re

Dunnett’s multiple comparison’s test; control vs. KO: p = 0.0001, KO vs. +GTF2I:

lines); scale bar, 10 mm. See also Figure S4F.

(E) Representation and top-down image of organoid plated for MEA electrophys

(F) Representative MEA raster plots for control and GTF2I-KO organoids. Pink re

(G) Compared to controls,GTF2I-KO organoids show fewer spikes per minute (St

GTF2I-KO MEA-plate wells), a decreased firing rate (Student’s t test, Welch corr

wells), and fewer bursts per minute (Student’s t test, Welch corrected, t49.7 = 3.6

difference in the network burst rate (Student’s t test, Welch corrected, t15.3 = 1.51,

index (Student’s t test, t63 = 0.11, p = 0.92; n = 31 control and n = 34 GTF2I-KO M

pooled from multiple experiments. Data are presented as mean ± SEM.
the effects of altering GTF2I along with combinations of neigh-

boring genes—as occurs in individuals with WS and 7dup—will

certainly be a valuable endeavor for future research.

Although preliminary analysis indicated that 2-month-old

GTF2I-KO organoids have similar proportions of proliferative

cells, the proliferation rate of GTF2I-KO NPCs was notably

increased. This discrepancy in findings is likely a floor effect in

consequence of the fact that the organoids attained an age at

whichmature neurons are the predominant cell type (FigureS3A),

lessening the ability to detect variation in proportions of progen-

itors. Interestingly, in contrast to the increased frequency of

apoptotic cells in GTF2I-KO organoids and neurons, GTF2I-KO

NPCs demonstrated an equivalent frequency of DNA fragmenta-

tion—the sub-G1 proportion of the cell population—to that

observed for controls. One explanation for this difference may

be that the cellular functions of GTF2I in neural progenitors

and in mature neurons are distinct,23 or that changes in less

differentiated cell types (e.g., hiPSCs, NPCs) ‘‘gate’’ or ‘‘prime’’

phenotypic changes upon further differentiation.33 Although

the findings of increased NPC proliferation and unchanged or

decreased cell death are expected,45 it has likewise previously

been demonstrated that increased proliferation of human

NPCs increases stress and promotes genomic instability.46

Replication stress-affected progenitors with GTF2I haploinsuffi-

ciency that are differentiated into neurons with GTF2I dysfunc-

tion may be incapable of coping with the DNA damage,23,40 a

plausibility that should be investigated further in future studies.

Separately, although the present study did not formally investi-

gate changes in hiPSCs, a previous study documented GTF2I

dosage-related transcriptomic dysregulation in hiPSCs in dis-

ease-relevant domains that were channeled and amplified

upon differentiation to NPCs,33 supporting the suggestion that

changes in less differentiated cells can affect cell functions as

they undergo further differentiation.

Limitations of the study
Our study has several intrinsic limitations. The differentiation pro-

tocols used here principally guide cells toward an excitatory

forebrain neuronal fate,35,47 limiting the diversity of cell types
creased electrical activity in human neurons and cortical organoids

ositive for the mature neuronal markers b-tubulin (Tuj1), synapsin, and MAP2;

optotic cells (Student’s t test, t7 = 3.16, p = 0.016; n = 5 10-cm plates of CVB

rotein synapsin (Mann-WhitneyU test, p = 0.026; n = 6 control samples and n =

tein PSD-95 (Mann-Whitney U test, p = 0.69; n = 4 control samples and n = 4

t protein extractions of �10 organoids, with intensity normalized by actin and

versible byGTF2I re-expression (1-way ANOVA, F3,90 = 7.703, p = 0.0001, with

p = 0.026, KO vs. +ctrl: p = 0.99; n = 16–33 neurons from CVB andWT83 hiPSC

iology.

ctangles generated by Axion NeuralMetric software denote network bursts.

udent’s t test, Welch corrected, t71.5 = 2.80, p = 0.007; n = 50 control and n = 44

ected, t56.9 = 2.80, p = 0.007; n = 41 control and n = 37 GTF2I-KO MEA-plate

1, p = 0.001; n = 37 control and n = 33 GTF2I-KO MEA-plate wells), with less

p = 0.15; n = 13 control and n = 6GTF2I-KOMEA-plate wells) or the synchrony

EA-plate wells); samples include organoids from CVB and WT83 hiPSC lines,
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Figure 4. Summary of human cellular neuro-

developmental changes resulting from the

loss of GTF2I

Loss of GTF2I results in cell-cycle alterations and

increased proliferation of NPCs compared to con-

trols. GTF2I-KO NPCs differentiate into neural net-

works that have less synaptic structural integrity,

decreased electrical activity, and increased cell

death.
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and cellular interactions under investigation in the present study.

Previous studies in animal models have argued that the loss of

GTF2Imay indirectly affect GABAergic cells48,49 and neuronal in-

teractions with oligodendrocytes,29 suggesting that including a

wider array of human neural cell types will be an important objec-

tive for future studies. Nevertheless, we have sought to minimize

this limitation by including several human cell models of neuro-

development, the convergent results of which increase our con-

fidence in our phenotypic findings. Moreover, our analysis of sin-

gle-cell transcriptomic data from cortical organoids affirmed the

pronounced expression of GTF2I in glutamatergic neurons, indi-

cating the central importance of GTF2I to their healthy function

and underscoring the value of the models used in the present

study for elucidating the consequences of loss ofGTF2I. In addi-

tion to restricted cellular diversity, our cellular models capture a

narrow window of early neurodevelopment35–38 that may inade-

quately portray the full involvement of GTF2I across the spec-

trum of human neurodevelopment. However, our concern

regarding how severely this shortcoming limits our findings is

lessened by the observation that GTF2I expression in the brain

is concentrated during the prenatal period of neurodevelopment

(Figure S4G),50,51 supporting a prediction that the effects of its

absence would be most pronounced during this period. An addi-

tional limitation of the present study is that both hiPSC lines were

generated from biologically male individuals, a shortcoming that

may hinder broader generalizability of our findings.

Conclusions
In summary, compared to control organoids, GTF2I-KO cortical

organoids showed decreased synaptic gene expression and

decreased synaptic proteins, reduced electrophysiological ac-

tivity, and increased cell death. GTF2I-KO neurons likewise ex-

hibited decreased synaptic integrity and increased apoptosis,

differentiated from GTF2I-KO neural progenitors that have a

higher rate of proliferation and altered cell cycle. Overall, our

findings suggest that the loss of GTF2I induces alterations in

neural progenitors that give rise to neurons and networks char-

acterized by impaired neuronal health and synaptic reduction.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
Two human iPSC lines derived from individuals with XY sex chromosomes were included in the present study. These iPSC lines were

previously generated, prior to formulation of the present study. Informed consent was obtained from all human subjects, and exper-

iments conformed to the principles set forth in the WMA Declaration of Helsinki and the Department of Health and Human Services

Belmont Report. The study was approved by the UCSD IRB/ESCRO committee (protocol 141223ZF). hiPSC colonies were main-

tained on 6-cm dishes coated with Matrigel (BD-Biosciences, San Jose, CA, USA) and fed daily with mTeSR1 (StemCell Technolo-

gies, Vancouver, Canada); only mycoplasma-negative cell cultures were used.

METHOD DETAILS

hiPS cell lines and cell culture
Control CVB and WT83 hiPS cell lines were used in the study.35,52,53 CRISPR-Cas9 editing was performed34 with guide RNAs deliv-

ered using a U6-guide-scaffold cassette to introduce frameshift mutations and knockout GTF2I function (Figures S1B–S1E). hiPSC

colonies were maintained on 6-cm dishes coated with Matrigel (BD-Biosciences, San Jose, CA, USA) and fed daily with mTeSR1

(StemCell Technologies, Vancouver, Canada)32; only mycoplasma-negative cell cultures were used.

Generation of cortical organoids
To generate cortical organoids,35 hiPSCs were cultured for approximately six days and then dissociated with 1:1 Accutase (Life

Technologies):PBS, and cells were subsequently plated into a 6-well plate (4x106 cells/well) in mTeSR1 supplemented with 10 mM

SB431542 (SB; Stemgent, Cambridge, MA, USA), 1 mM Dorsomorphin (Dorso; R&D Systems, Minneapolis, MN, USA), and 5 mM

Y-27632 (EMD-Millipore, Burlington, MA, USA) and subsequently cultured in shaker suspension (95 rpm at 37�C). Emergent spheres

were fedmTeSR1 (supplementedwith 10 mMSBand 1 mMDorso) for three days, after whichmediumwas changed toMedia1 [Neuro-

basal (Life Technologies), 1x Glutamax (Life Technologies), 2% Gem21-NeuroPlex (Gem21; Gemini Bio-Products, Sacramento, CA,

USA), 1% N2-NeuroPlex (N2; Gemini Bio-Products), 1% non-essential amino acids (NEAA; Life Technologies), 1% penicillin/strep-

tomycin (P/S; Life Technologies), 10 mM SB, and 1 mM Dorso] for six days, every other day; then Media2 (Neurobasal, 1x Glutamax,

2% Gem21, 1% NEAA, and 1% P/S) supplemented with 20 ng/mL FGF-2 (Life Technologies) for seven days, daily; followed by Me-

dia2 supplemented with 20 ng/mL each of FGF-2 and EGF (PeproTech, Rocky Hill, NJ, USA) for six days, every other day; and then

Media2 with 10 ng/mL each of BDNF, GDNF, and NT-3 (all PeproTech), 200 mML-ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA),

and 1mMdibutyryl-cAMP (Sigma-Aldrich) for six days, every other day. Cortical organoidswere subsequently maintained indefinitely

in Media2 without supplementation.

Progenitor and neuronal differentiation of hiPSCs
Colonies of hiPSCs cultured for approximately six days were dissociated in 1:1 Accutase (Life Technologies):PBS, and �4x106

hiPSCs were plated per well of a 6-well plate in suspension in 3 mL mTeSR1 supplemented with 5 mM Y-27632 (EMD-Millipore)

and cultured in shaker suspension (95 rpm at 37�C) to form embryoid bodies (EBs). Mediumwas replaced the following day with Neu-

ral Induction Medium (NIM; StemCell Technologies) and fed with NIM daily or every other day. After seven days, EBs were plated on

Matrigel-coated 6-cm plates and fed with NIM for another week. Emergent rosettes were pickedmanually with a P1000 tip and trans-

ferred to a newMatrigel-coated 6-cmdish. After 2–3 days, rosettes with neurite outgrowth weremanually picked again, transferred to

a 15 mL conical tube, and dissociated by incubating them in 1–2 mL Accutase (Life Technologies) at 37�C for�5–10 min followed by

manual dissociation with a P1000 pipette to single-cell suspension. Cells (NPCs) were centrifuged for 4 min at 1.1 rpm, resuspended

in NGFmedium [DMEM/F12 (Life Technologies), 1x N2 (Gemini), 1x Gem21 (Gemini), 1% P/S (Life Technologies), and supplemented

with 20 ng/mL FGF-2], and seeded on poly-L-ornithine/laminin plates. NPCs were expanded and maintained in NGF medium with

feeding on alternate days. Neuronal differentiation was induced by withdrawing FGF-2 supplementation.

Western blotting
To perform Western blotting,43 total protein was extracted and quantified (Pierce BCA Protein Assay Kit, ThermoScientific) after cell

lysis in RIPA buffer (ThermoScientific) with cOmplete ULTRA mini protease inhibitor (Roche, Mannheim, Germany) and PhosSTOP

phosphatase inhibitor (Roche). Total protein (20 mg) was separated on a Bolt 4–12% Bis-Tris Plus Gel (Life Technologies) and sub-

sequently transferred to a nitrocellulose membrane using an iBlot2 dry blotting system (ThermoScientific). Membranes were blocked

at room temperature for 1–4 h (Rockland Immunochemicals, VWR International, Arlington Heights, IL, USA); primary antibodies (rab-

bit anti-Synapsin1, EMD-Millipore AB1543P, 1:1500; mouse anti-PSD-95, Neuromab, 1:1500; rabbit anti-GTF2I, Abcam (Cambridge,

UK) ab129025, 1:250; mouse anti-b-actin, Abcam ab8226, 1:10,000) in blocking buffer incubated, shaking, overnight at 4�C. Mem-

branes underwent three 5-minwasheswith PBS+0.1%Tween 20, followed by the application of secondary antibodies (IRDye 680RD

and IRDye 800CW, 1:5000 in blocking buffer) incubated at room temperature, shaking and protected from light, for 1 h. Membranes

underwent three more washes, after which an Odyssey CLx infrared imaging system (LiCOR Biosciences, Lincoln, NE, USA) was

used to detect proteins; signal intensity was normalized relative to intensity quantification of b-actin.
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Immunofluorescence staining of monolayer cells and cortical organoids
To perform immunofluorescence,32,35,43 cells were fixed in 4% paraformaldehyde, washed three times with PBS (5 min each), and

then permeabilized and blocked (0.1% Triton X-100 and 3%BSA in PBS). Cortical organoids were fixed overnight in 4% paraformal-

dehyde and subsequently transferred to, and sunken in, 30% sucrose, embedded in O.C.T. (Sakura, Tokyo, Japan), and sectioned at

20 mm on a cryostat. Slides with organoid sections were air-dried and then permeabilized and blocked (0.1% Triton X-100 and 3%

BSA in PBS). Primary antibodies (goat anti-Nanog, Abcam ab77095, 1:500; rabbit anti-Oct4, Abcam ab19857, 1:500; mouse anti-

Nestin, Abcam ab22035, 1:200 (organoid: 1:250); rat anti-CTIP2, Abcam ab18465, 1:250 (organoid: 1:500); chicken anti-MAP2,

Abcam ab5392, 1:1000 (organoid: 1:2000); rabbit anti-Synapsin1, EMD-Millipore AB1543P, 1:500; mouse anti-Vglut1, Synaptic Sys-

tems (Goettingen, Germany) 135311, 1:500; rabbit anti-Homer1, Synaptic Systems 160003, 1:500; mouse anti-NeuN, EMD-Millipore

MAB377, 1:500; rabbit anti-Ki67, Abcam ab15580, 1:1000; rabbit anti-SOX2, Cell Signaling Technology (Danvers, MA, USA) 2748,

1:500) in blocking buffer incubated overnight at 4�C. Slides were washed three times with PBS (5 min each) and then incubated with

secondary antibodies (Alexa Fluor 488, 555, and 647, Life Technologies, 1:1000 in blocking buffer). Nuclei were stained with DAPI for

10 min (1:10,000 in PBS). Slides were mounted with ProLong Gold anti-fade mountant (Life Technologies) and imaged and analyzed

with a Z1 Axio Observer Apotome fluorescence microscope (Zeiss, Oberkochen, Germany). Specific cell types in cortical organoids

were either quantified manually or using ImageJ; DAPI was quantified using ImageJ.

RNA sequencing analyses
RNAwas isolated via an RNeasyMini kit (Qiagen) for library preparation (Illumina TruSeqRNASample Preparation Kit; San Diego, CA,

USA) and sequencing (Illumina HiSeq2000, 50bp paired-end reads, 50 million high-quality sequencing fragments per sample, on

average). Data was analyzed by ROSALIND (https://rosalind.onramp.bio/), with a HyperScale architecture developed by

ROSALIND, Inc. (San Diego, CA). Reads were trimmed using cutadapt.54 Quality scores were assessed using FastQC.55 Reads

were aligned to the Homo sapiens genome build hg19 using STAR.56 Individual sample reads were quantified using HTseq57 and

normalized via Relative Log Expression using DESeq2 R library.58 Read Distribution percentages, violin plots, identity heatmaps,

and sample MDS plots were generated as part of the QC step using RSeQC.59 DEseq2 was also used to calculate fold changes

and p values and perform optional covariate correction. Clustering of genes for the final heatmap of differentially expressed genes

was done using the PAM (Partitioning Around Medoids) method using the fpc R library.60 Hypergeometric distribution was used to

analyze the enrichment of pathways, gene ontology, domain structure, and other ontologies. Enrichment was calculated relative to a

set of background genes relevant for the experiment. Gene ontology analysis was performed using WebGestalt.61,62

Single-cell RNA sequencing analysis
Single-cell reads fromorganoids in four timepoints (1, 3, 6, 10months)were reanalyzedusing the sameprotocol described in the original

paper by Trujillo and collaborators.35 The raw reads were preprocessedwith Cell Ranger software (version 2.1.1, 10x Genomics, Pleas-

anton,CA),aligned tohg38human referencegenome.Foreach timepoint,genesnotdetectedbyat leastfivecells andcellswith less than

200genesdetectedwerediscardedusingSeuratpackage.Thesubsequentfilteredmatrixwas log-normalizedandscaled to10,000 tran-

scriptsper cell. For themergeof the fourdatasets theMergeSeurat functionwasused togeneratea singlematrix tobeusedasan input to

Seurat v3 anchoring procedure. Default parameters were selected for the FindIntegrationAnchors and IntegrateData functions. Subse-

quent graph analysiswas performed to identify the sameclusters as themainpaper, and sevenmainclusters basedon the expressionof

marker genes. Dot plots and UMAP for the expression of GTF2I were performed using ggplot2 package.

Cell cycle assay
To perform cell cycle assays,63–65 NPCs were dissociated and quantified using a Via1-Cassette with the NucleoCounter NC-3000

(Chemometec, Allerod, Denmark). Dissociated cells were fixed on ice or at 4�C with 70% ethanol for at least 2 h. Cells were subse-

quently resuspended in a solution of 0.5 mg/mL DAPI and 0.1% Triton X-100 in PBS and incubated at 37�C for 5 min. Cells were then

distributed onto an NC-Slide A2 chamber (Chemometec), and fluorescence was quantified with the NucleoCounter NC-3000 accord-

ing to the manufacturer’s protocol.

Annexin V assay
Annexin V assay was performed64,65 by first dissociating cortical organoids andmonolayer neurons, which were subsequently resus-

pended in Annexin V binding buffer (Invitrogen) with Annexin V-CF488A conjugate (Biotium, Inc., Hayward, CA, USA) and Hoechst

33342 (Chemometec) and incubated for 15 min at 37�C. After a PBS wash, the cells were resuspended in Annexin V binding buffer

(Invitrogen) supplemented by 10 mg/mL propidium iodide (Chemometec). Cells were loaded into NC-Slide A2 chambers and as-

sessed with a Chemometec NucleoCounter NC-3000 cytometer using the preoptimized Annexin V assay.

DNA fragmentation assay
To perform the DNA fragmentation assay,64 single-cell NPCs were collected and suspended in PBS and fixed with 70% ethanol for

24 h at 4�C. Cells subsequently were washedwith PBS, resuspended in DAPI staining solution (0.1% (v/v) Triton X-100, 1 mg/mLDAPI

in PBS), and incubated for 5 min at 37�C. Samples were analyzed with a Chemometec NC-3000 cytometer using the preoptimized

DNA Fragmentation Assay.
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Synaptic puncta quantification
Co-localized VGlut1 (presynaptic) and Homer1 (postsynaptic) immunostained puncta along MAP2-positive processes were quanti-

fied via immunofluorescence staining.32,43,47 Primary antibodies incubated overnight at 4�C, secondary antibodies incubated at

room temperature for 1 h, and coverslips were mounted; see above for complete immunofluorescence methodology. GTF2I rescue

experiments were performed by transfecting 3x106 NPCs with a Nucleofector 2b (Lonza Bioscience, Morristown, NJ, USA) with 1 mg

of the commercially obtained plasmid eGFP-CAG>hGTF2I (VectorBuilder, Chicago, IL, USA) or a GFP-expressing control plasmid

(Lonza Bioscience) according to the Neural Stem Cell Nucleofection kit protocol using the preoptimized A-033 program. Cells

were resuspended in NGF medium (see above) and subsequently seeded and allowed to undergo neuronal differentiation on

poly-L-ornithine/laminin-coated chamber slides (ThermoFisher). The slides were imaged using a Z1 Axio Observer Apotome fluores-

cence microscope (Zeiss), and a blinded investigator manually quantified co-localized synaptic puncta along 50 mm segments of

randomly selected MAP2-positive processes.

Multi-electrode array (MEA) recording
To obtain MEA recordings,35,43,64,66 six-week-old cortical organoids were plated in 6-, 12-, or 48-well (each well with an 8x8 grid of

electrodes) MEA plates (Axion Biosystems, Atlanta, GA, USA) pre-coated with 100 mg/mL poly-L-ornithine and 10 mg/mL laminin.

Cellular cultures were fed twice per week with Medium 2 (see above) and, 7–14 days after plating, were incrementally switched to

BrainPhys medium (StemCell Technologies67) supplemented with 10 ng/mL of BDNF (PeproTech) and 200 mM L-ascorbic acid

(Sigma-Aldrich). Recordings were conducted in aMaestroMEA systemwith AxIS Software Spontaneous Neural Configuration (Axion

Biosystems). Using Axion Biosystems’ Neural Metrics Tool, active electrodes required at least five spikes/min. Bursts/electrode used

an inter-spike interval (ISI) threshold requiringminimally five spikes with amaximum ISI of 100ms. Network bursts required at least 10

spikes under the same ISI with >25% active electrodes in the well. The synchrony index utilized a cross-correlogram window

of 20 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad Prism v9 (GraphPad Software, La Jolla, CA). Sample sizes were determined

based on previous publications from this lab and others. Experiment-specific information for samples and cell lines is detailed in

the figure legends. Samples were allocated and evaluated according to genotype; no randomization was applied. Analyses of syn-

aptic puncta were performed by blinded investigators. Data exclusion in MEA datasets (outliers) was carried out automatically using

pre-established criteria as described above. Outliers in other experiments were determined using GraphPad criteria and excluded.

Results for continuous variables were expressed as mean ± standard error of the mean and 95% confidence intervals were normal-

based. Normality was assessed visually or via analysis in GraphPad, and variance was accounted for in all analyses. Means for

continuous variables were compared between groups using, where appropriate, unpaired Student’s t-test, one-way, or two-way an-

alyses of variance, and nonparametric distributions were compared using Mann Whitney U test. Tests were performed two-sided

with a throughout set as 0.05.
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